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Abstract

This paper develops an analytical model for the ballistic impact response of fibrous materials of interest in body

armor applications. It focuses on an un-tensioned 2D membrane impacted transversely by a blunt-nosed projectile, a

problem that has remained unsolved for a half a century. Membrane properties are assumed characteristic of the best

current body armor materials (Kevlar�, Spectra�, Zylon�, S2 glass), which have very high stiffness and strength per unit

weight, and low strain-to-failure. Successful comparisons will be made with extensive experimental data on such ma-

terial systems as reported by Cunniff [Decoupled response of textile body armor. Proc. 18th Int. Symp. of Ballistics, San

Antonio, Texas, 1999a, pp. 814–821; Vs–Vr relationships in textile system impact. Proc. 18th Int. Symp. of Ballistics, San

Antonio, Texas, 1999b; Dimensional parameters for optimization of textile-based body armor systems, Proc. 18th Int.

Symp. of Ballistics, San Antonio, Texas, 1999c, pp. 1303–1310]. Our mathematical formulation draws on the seminal

work of Rakhmatulin and Dem�yanov [Strength Under High Transient Loads, 1961, pp. 94–152]. Under constant

projectile velocity we first develop self-similar solution forms for the tensile �implosion� wave and the curved cone wave

that develops in its wake. Through matching boundary conditions at the cone wave front, we obtain an accurate

approximate solution for the membrane response including cone wave speed and strain distribution. We then consider

projectile deceleration due to membrane reactive forces, and obtain results on cone velocity, displacement and strain

concentration versus time. Other results obtained are the membrane ballistic limit, or V50 velocity, and the residual

velocity when penetrated above this limit. We then derive an exact functional representation of a V50 �master curve�
found empirically by Cunniff [ibid] to reduce data for a wide variety of fabric systems impacted by blunt cylindrical

projectiles. This curve is given in terms two dimensionless parameters based only on fiber mechanical properties and the

ratio of the fabric areal density to the projectile mass divided by its area of fabric contact. Our functional representation

has no fitting parameters beyond one reflecting uncertainty in the effective diameter of the impact zone relative to the

projectile diameter, and even then the values are consistent across several experimental systems. The extremely suc-

cessful comparison of our analytical model to experimental results in the literature raises fundamental questions about

many long-held views on fabric system impact behavior and parameters thought to be important.
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1. Introduction

The development of lightweight fibrous material systems to resist penetration by high-velocity bullets has

been an important research topic since World War II and even moreso since the terrorist attacks of
September 11, 2001. The most effective body armor for military and law enforcement personnel involves

multi-ply fabrics and flexible fibrous composites sometimes placed behind a hard ceramic strike face (e.g.,

5–10 mm of B4C) to blunt armor-piercing rounds. These fibrous materials are also key components in

armor panels for automobiles, light military vehicles, helicopters and airline cockpit doors.

The last few decades have indeed seen the development of greatly improved fibrous materials for ballistic

protection. Nylon fibers were dominant prior to 1972, and these showed considerable non-linearity in

stress–strain response, with relatively high strains to failure. In the decades since, new polymeric fibrous

materials have been developed that exhibit greatly improved performance. They include aramids (e.g.,
Kevlar�, Twaron�, Technora�) highly oriented polyethylene (e.g., Spectra�, Dyneema�) and PBO (e.g.

Zylon�), and more such as PIPD (M5�) are being developed. In tension, all these materials differ greatly

from their nylon predecessors, having very high stiffness, extremely high strength to weight ratios, and very

low strains to failure (<4%). They are essentially elastic in tension, both at low and high rates of loading,

where stiffness differences are minor. At the same time, they are similar to nylon in transverse compression,

undergoing large plastic deformation without a significant reduction in tensile load-carrying ability (unlike

carbon or glass fibers, which shatter). The best of these, PBO, has a tensile strength of 5.2 GPa, more than

three times the strength of the strongest steel (piano wire) at 1/5 the density; their strength to weight ad-
vantage is fifteen.

To provide perspective, Fig. 1 illustrates a sequence of possible events that a futuristic, lightweight

material system (perhaps 40% the weight of current systems) might undergo to halt an armor-piercing

bullet. Such 10 g bullets have a tool steel core (grey) a lead nose (black) and a gliding metal surface (copper

color). In present armor systems, bullet blunting is provided by a 5 – 10 mm hard ceramic surface (e.g.,

B4C) and the bullet deformation sequence shown in Fig. 1 reflects observations from X-ray experiments

(Anderson and Gooch, 2001). In our hypothetical system, however, the much thinner, ultra-hard surface,

eventually moves with the blunted bullet, whereas in current body armor, the ceramic is finally penetrated,
passing the blunted bullet and ceramic debris to a fibrous composite layer beneath (e.g., Spectra Shield� or
Fig. 1. Schematic of a hypothetical layered fibrous structure envisioned to stop armor piercing APM2 bullets, yet half the weight of

current, state-of-the art systems. What structural analysis and material properties would be necessary to achieve such a revolutionary

structure?
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S2 glass). Integral with the hard strike face might be a functionally graded, fibrous material, a few mm thick

that develops an impact wave as a growing cone. The bullet may be slowed enough over the next 1–2 cm to

be stopped finally by a third, soft layer (e.g., plies of Kevlar� KM2 fabric).

Questions arise from the fictitious description depicted in Fig. 1: Is such a lightweight armor system
possible, given foreseeable advances in nanotechnology? Is the sequence of events described physically

realistic for the armor weight assumed? What might be the ideal armor architecture and design? Should it

be a �rigid� composite or be flexible with unbonded layers and little or no matrix? Would a three-dimen-

sional weave be superior to multiple layers of two-dimensional (2D) fabric of the same thickness? The goal

of this paper is to develop a model that would go a long way towards making such an assessment possible.

To understand the impact response of such fibrous systems, one must first consider the basic building

blocks: single-ply fabrics, and single yarns and fibers. Their response to high velocity impact is difficult to

model because it differs from the common experience of a drum struck with a mallet, or a guitar string
struck with a pic. These are under high initial tension that is not altered during wave motion, and transverse

displacements and angles are small. Their modeling is amenable to classic mathematical techniques of linear

vibrations, as treated in books on wave motion (e.g., Graff, 1991). The same is not true for the fibrous

systems above; what complicates the analysis is that the impact velocities are large enough to drastically

alter the tension (initially negligible in most cases) and the displacements and deflection angles are large.

Because of these mathematical complications, except for the little known monograph of Rakhmatulin

and Dem�yanov (1961), ballistic impact on fibers, yarns and membranes is not treated in books. None-

theless many theoretical papers have appeared on projectile impact into one-dimensional (1D) fibers and
yarns, particularly from 1940 to the 1974. However, a comparable theoretical literature on 2D membranes

is largely absent. To fill this theoretical vacuum, finite-element, simulation models of fabric impact began to

appear in the 1970s, and although shedding some light on experiments, have not resulted in useful scaling

relationships to guide body armor design. The simulations have also remained limited in system sizes and

have suffered other difficulties discussed later. Thus, most research has necessarily involved costly and time-

consuming trial-and-error experimentation.

Most of the theoretical literature was developed in the era of nylon and metals prior to 1970, and un-

derstandably emphasizes complexities due to non-linear tensile behavior, with much emphasis on plastic-
like material characteristics. While leading to rich and diverse mathematical results, such emphasis has

obscured understanding of simpler, elastic behavior typical of all the best current materials. In many early

papers, elastic results are often left for the reader to extract from a complex non-linear analysis. Pre-

occupation with material non-linearities persists. Projectiles have enormous kinetic energy, and one way or

another, this energy must be absorbed if they are to be stopped. For many researchers, this naked truth

impulsively prompts thinking in terms of various measures of toughness, such as ductility, fracture

toughness, frictional slip and even energy absorbed in phase transitions. As we shall see, such concepts are

not necessary to explain the superiority of current fibrous materials in body armor.
The purpose of the present paper is to revisit the longstanding problem of blunt projectile impact on a

2D membrane, and to develop a new theory that yields accurate, closed-form approximations. These results

will briefly be compared to experimental data in the literature on both single and multi-ply fabric structures.

We begin, with a brief review of literature relevant to the current study.

1.1. Overview of literature on transverse impact of 1D string-like structures

The earliest work appears to be due to Taylor (1942). Following von Karmann (1942), Taylor treated the

case of a plastic wave traveling down a wire extended by transverse impact. Broad fundamental advances,

however, were due to Rakhmatulin (1945, 1947, 1951, 1952) and are summarized in the monograph of

Rakhmatulin and Dem�yanov (1961), which also discusses works of Zverev (1949), Grigor�ev (1949),
Ryabova (1953), Cristescu (1954) and Moroz (1956). In literature in English, Cole et al. (1953) are often
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credited as having obtained the first major results, followed by the more general formulation of Craggs

(1954) using the method of characteristics. However, many of the results in Cole et al. had appeared earlier

in the work of Rakhmatulin (1945). Interestingly, Ringleb (1957) mentions a result in his 1948 US

Government report relating the strain in an aircraft carrier arrest cable to the transverse impact velocity
and longitudinal wave speed. His result became subject to military classification, but this was abandoned

once it was discovered in the open literature (e.g., in Rakhmatulin (1945)).

In the US, papers on fibrous body armor development typically begin with reference to the work of

Smith et al. (1958), which deals with transversely impacted yarns having non-linear, stress–strain curves

characteristic of nylon. Their paper presents an elaborate treatment of the resulting complications in shock

formation and wave speeds. Smith et al. (1960, 1963) summarize these results (and those of Cole et al.

(1953)), and give explicit results for linear elastic behavior. They also treat interference effects from waves

reflected from boundaries, which are used to interpret experiments on determining strain wave velocities.
Many of these topics were also treated earlier in the Russian literature mentioned above, with similar re-

sults. Apparently the US authors were unaware of those works. The Russian works prior to 1958 are rarely

referenced in literature in English.

Other work is that of Roylance (1973), who treated the effects of yarn linear viscoelasticity using a finite-

element simulation, and Morrison (1984) who studied transverse impact on aramid yarns, both through

experiments and finite-element simulations. Prevorsek et al. (1991) studied impact on high stiffness poly-

ethylene yarns (Spectra�) and reported a doubling of the stiffness of Spectra� at ballistic loading rates.

Results on 1D problems have shed only modest light on behavior seen in 2D fabrics systems. Experi-
ments show that their ballistic responses are very different in important ways. One reason is that results

from 1D models are largely insensitive to the dimensions of the projectile tip, whereas experiments show

these dimensions to be crucial in 2D fabric systems.

There also remains the issue of gleaning results from past analyses that are relevant to modeling the best

current systems and guiding future research. In the past, new materials have been discovered largely by

accident, and only after commercialization, mainly for other purposes, have they been found to be superior

in ballistic protection. Recently, the US Government has committed substantial resources to developing

new materials using advances in nanotechnology. The success of such efforts is likely to require much
greater understanding of why current systems are so successful and what new directions might be ventured

to yield even better performance. Otherwise such efforts risk failure. We believe that theoretical modeling

and analysis has a key role to play in this process.

1.2. Overview of analytical literature on transverse impact of 2D membranes and fabrics

The earliest work on transverse impact of a projectile into an elastic membrane appears to be that of

Grigoryan (1949) for point impact and neglecting circumferential (hoop) stresses. As mentioned in

Rakhmatulin and Dem�yanov (1961) and shown in Galin (1949), neglecting circumferential stresses for

point impact leads to unreasonable results. Rakhmatulin and Dem�yanov (1961) reformulated the gov-

erning partial differential equations to include circumferential stresses and Poisson�s ratio effects, and
presented very limited analytical results based on the work of Pavlenko (1952). These results were for the

specialized case of impact by a sharply pointed cone under certain assumptions on projectile contact and

interface slippage. While some insight can be gleaned, particularly with respect to solution approach and

wave characteristics, the results provide little insight into membrane response under the more realistic case

of impact by a blunt projectile (either blunted in the initial impact as with a lead bullet or first blunted by a

sacrificial ceramic layer for harder bullets) where the nose diameter becomes a characteristic length scale.

The above authors concluded that circumferential hoop stresses are essential to a solution, but this

conclusion is questionable in cases other than idealized point impact, where hoop stresses appear necessary
to compensate for local singular behavior. For instance, singular behavior does not occur in models of
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point impact on a 1D string. In fact, hoop strains in a membrane are typically negative and one cannot

expect membranes and fabrics to support significant compressive stresses in plane without locally buckling.

Including them, however, leads to overwhelming mathematical difficulties that led Rakhmatulin and

Dem�yanov (1961) to express pessimism on the prospects for obtaining solutions using classical mathe-
matical techniques. Another issue apparently little appreciated, is the subtle process of generating self-

similar solutions for membrane deformation to obtain useful results. Mishandling of this aspect can lead to

predicted excessive stresses upon impact that suggest premature membrane failure irrespective of velocity.

In this respect, analysis for the 1D problem proves subtly misleading. The practically important aspect of

having a length scale for the projectile tip, also drives the mathematical formulation, and without it the

results lose relevance––if achievable at all.

Some approximate models of fabric impact have been published. Vinson and Zukas (1975) adapted a

static conical shell theory to fabric impact by a blunt cylindrical projectile, thus introducing a key length
scale. The model did not yield a wave speed for the deformation cone, so their numerical solution used

experimental values in Maheux (1957). Their model results were compared to his nylon fabric experiments

as well as those in Roylance et al. (1973), and one interesting result was a linear relationship between the

maximum shell strain at penetration and the projectile striking velocity. Vinson and Walker (1997) used the

same conical shell model to interpret experiments of Lee and Sun (1993) on impact into much more rigid

graphite/epoxy laminates. They used the composite shear wave velocity as the cone edge wave speed and

commented that the membrane strain energy dominates the bending strain energy to the point where the

latter can be neglected, thus justifying the use of the conical shell model. They also comment that the matrix
does not increase the resistance to ballistic penetration, a conclusion largely supported in other work

discussed later. A linear relationship was again calculated between the maximum shell strain at penetration

and the projectile striking velocity.

Walker (1999, 2001) developed an impact model for fabrics and flexible composites using a static de-

flection analysis for biaxial membranes under point loading and restrained edges. The model yielded a

curved pyramid shape for fabric deflection including an expression for the pyramid edge wave speed. To

obtain a relationship between the ballistic limit velocity and material parameters, Walker introduced a

projectile nose radius, and the resulting function fit experimental data well. An unrealistic aspect was
omission of in-plane material displacements towards the origin, as expected from tensile wave propagation.

This resulted in unrealistically small pyramid angles at failure. We also mention modeling efforts by Scott

(1999) who adapted a plate analysis to model the penetration of compliant composites, and Chocron-

Benloulo et al. (1997) who extended the 1D yarn impact model by adding a strain energy based, damage

variable. Cheeseman and Bogetti (2003) summarize recent thinking on fabric system impact.
1.3. Overview of literature on numerical simulation of impact on biaxial fabric systems

Mathematical difficulties in modeling membrane impact have prompted the development of numerical

simulation models. The earliest efforts were those of Roylance et al. (1973) on biaxial fabrics. They im-
plemented a dynamic form of finite-element analysis described in Mehta and Davids (1966), and obtained

many behavioral features seen in experiments. One important feature, not occurring in 1D models, was

strain intensification over time near the projectile impact point. This strain increase was attributed to the

discrete nature of fabrics in terms of tensile wavelet reflections and interactions at yarn crossovers, said to

cause attenuation at the strain wave front. This aspect was considered more by Roylance and Wang (1980).

They found that energy conservation discrepancies in the projectile to fabric energy exchange were mini-

mized upon taking the fabric tensile wave velocity to be that for the yarn divided by
ffiffiffi
2

p
, a result one might

expect as crossing yarns double the effective yarn mass without adding stiffness in the direction of wave
propagation.



6728 S. Leigh Phoenix, P.K. Porwal / International Journal of Solids and Structures 40 (2003) 6723–6765
The simulation model of Roylance and coworkers has continued to evolve. A few results appeared in an

overview article of Cunniff (1992), and further extensions appeared in Ting et al. (1993), and Roylance et al.

(1995), where yarn slippage and wave interference were modeled in multi-ply fabric systems. Most recently,

Cunniff and Ting (1999) introduced more detail on the out-of-plane yarn undulations with inter-yarn elastic
couplings at crossovers, as well as subdivision of yarn segments between crossovers to increase resolution

near the impact zone.

Other simulation models have appeared, such as the one of Johnson et al. (1999) whose finite-element

model uses both bar and shell elements. This more general model permits a wider variety of target and

projectile configurations and of material systems than those above, including the possibility of sliding of the

projectile on the fabric. The model appeared to produce some results for residual velocity versus impact

velocity consistent with experiments on multi-ply fabrics using RCC projectiles of various weights. How-

ever, the entire thickness of the multi-ply fabric was represented by a single layer of bar and shell elements,
thus eliminating compliance through the thickness. Results were presented for Kevlar� KM2/polyethylene

matrix composite targets showing membrane like behavior quite similar to that of the matrix free fabric

systems, thus tending to support the contention of Vinson and Walker (1997).

Additional studies include Shim et al. (1995) using an orthogonal grid of pin-jointed, finite-elements,

including effects of viscosity and crimp of orthogonal yarns. Simons et al. (2001) developed a finite-element

model with applications to fragment containment in turbine failures, but the projectile velocities were an

order of magnitude less than in other studies above. Prevorsek et al. (1991) developed a finite-element model

for impact on Spectra� composites, including partial penetration with severe projectile deformation. Keefe
et al. (2002) is developing a simulation model that shows considerable realism at capturing local details of

fabric impact, as does the finite-element model of Lim et al. (2003), which also treats viscoelastic behavior.

Though useful, the simulation models above have suffered from various shortcomings. First, the models

are susceptible to numerical �ringing� oscillations attributable to the discrete elastic nature of the hinged

lattice model, and the peak amplitudes can greatly exceed local average values. Given the emphasis placed

by Roylance and coworkers on the role of discrete wavelet reflections, it then becomes difficult to argue that

the oscillations are artifacts rather than critical features. Attempts at greater resolution in Cunniff and Ting

(1999) seem to cause higher amplitude spikes and oscillation frequencies, thus exacerbating the ringing
problem to the extent that some form of strain and displacement smoothing seems necessary, which defeats

the purpose of the refinements. One method to control ringing has been to artificially add viscous damping

as in Roylance and Wang (1980) and Johnson et al. (1999) and to apply some form of response smoothing.

The latter authors, who did both, expressed concern that such additions are artificial and without physical

basis. It also confounds accounting of projectile to fabric energy transfer and its redistribution in terms of

elastic strain energy versus in-plane and out-of-plane kinetic energy. In a real system there is considerable

heat generation, and undamped, pin-jointed fabric models reveal this thermal energy in terms of high-

frequency ringing and associated strain spikes. Ironically, continuum models may have certain advantages
in avoiding such problems.

A second shortcoming of most simulation results is a lack of attention paid to the projectile geometry

and the size scale of the contact zone as key influences in fabric response. Although mentioned as model

capabilities, reported results primarily assume projectile contact at a single point where two yarns cross.

The key length scale de facto becomes the fabric yarn spacing rather than a projectile nose dimension,

which is an important quantity in standardized fabric impact experiments. Furthermore, the initial stages of

blunt impact become poorly modeled because of the initial pointed deflection at the impact node and the

resulting strain concentration whose interpretation becomes unclear. As will be seen, these aspects are
crucial to determining the strain concentration in the fabric adjacent to the projectile as well as initial

momentum transfer, fabric energy distribution and potential local heat generation from impact. In the one

instance where the projectile shape was modeled as a sphere versus a blunt cylinder by Johnson et al. (1999),

large amounts of viscous damping and numerical smoothing were necessary to control the ringing. Such
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difficulties may have become a deterrent in other studies as well, thus explaining the lack of results reporting

effects of projectile shape and scale.

A third shortcoming of such simulation models is that computational demands rapidly escalate as larger

systems are treated and more microstructural features are incorporated, often with conflicting results. Thus,
while simulation models have great potential and have provided insight, consistent quantitative predictions

have been elusive. Given the large number of microstructural parameters of potential significance in fabric

impact response, some guidance of theory is essential to winnowing down this number to those most im-

portant.

1.4. Brief overview of literature on experimental studies of ballistic impact in fabrics

There exists a vast literature and data base from experimental studies of ballistic impact into fabric and

flexible composite systems. This data base continues to grow through applying test standards such as NIJ

Standard-0101.04, Revision A (2001) on new body armor systems. Much of the accessible data reflects

various uncertainties since values for key parameters have been omitted (and even disguised for national

security reasons). This hampers comparisons with model predictions. Nonetheless, sufficient data exists in

reduced form to draw important conclusions. We make no attempt at a comprehensive review but will
discuss certain results and frameworks often used to evaluate body armor systems.

Among the early works cited are those of Maheux (1957) on multi-ply armor panels and Wilde et al.

(1973, 1974) on a photographic study of impact into nylon fabrics. These works give some details on re-

tarding forces, energy absorption and deformation cone growth including its edge wave speed. Projectile

geometry effects on fabric energy absorption were considered by Montgomery (1980). In developing a more

efficient method for continuous-time measurement of projectile velocity and force, using a laser sheet

system, Starratt et al. (1999, 2000) presented useful profiles for 8-ply Kevlar� 129 fabric systems impacted

by blunt-tipped aluminum cylinders.
A commonly investigated theme is the relationship between the striking projectile velocity and the re-

sidual (exit) velocity after penetration. Prosser (1988) presented extensive results supporting his contention

that, for a given multi-ply fabric system and projectile type, the energy absorbed during penetration is a

constant, which is linearly dependent on the number of layers. This was believed to indicate that identical

layers perform largely in a decoupled fashion, a theme pursued later in Cunniff (1999a). This same striking

versus exit velocity relationship is further developed in Cunniff (1996, 1999b), who used a semi-empirical

model with many regression coefficients to resolve impact data for various projectile types and angles of

obliquity into various systems. Fabric layer decoupling and other system effects were discussed in Cunniff
(1992) where anomalous coupling effects resulted from interchanging the order of Spectra� and Kevlar�

fabrics plies having markedly different mechanical properties.

Finally we mention some remarkable results of Cunniff (1999c) who used a special pair of dimensionless

parameters to reduce to one master curve V50 data for a wide variety of multi-ply fabric systems impacted by

standardized cylindrical projectiles of unit aspect ratio and various masses. The materials were various

deniers of Kevlar� 29 and KM2, Spectra 1000, PBO, and nylon, and the normalization required only the

fiber elastic mechanical properties and density, and the ratio of the areal density of the fabric system to the

mass of the RCC projectile divided by its cross-sectional area. These results will be crucial to our model
verification.

1.5. Brief overview of the paper

In the present work we show that more complete solutions are indeed possible for important cases of 2D

membrane impact, and that difficulties encountered previously stem from overlooking certain key transient
solutions for the radially propagating tension waves. We obtain specific results for cases where elastic
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membranes have low density, are stiff in tension, have very high strength and low strain to failure. These are

precisely the properties of fibrous materials that presently yield the best performance per unit weight in body

armor. We will also develop relevant results for impact into 1D systems (yarns, tapes) for purposes of

comparison.
In Section 2 we formulate the partial differential equations for the 2D problem of an untensioned, elastic

membrane impacted transversely by an axisymmetric, flat nosed projectile traveling at fixed velocity. The

formulation follows that of Rakhmatulin and Dem�yanov (1961) where we neglect compressive hoop

stresses since they are not supported in thin membranes. In Section 3 we give an accurate approximate

solution to these equations based on the assumption of small meridional and radial membrane strains and

generalized, self-similar scaling. Key to the solution is the length scale introduced by the radius of the flat

projectile nose, and it is shown that the initial behavior is governed by the 1D solution, followed imme-

diately by a sharp but continuous transition to characteristic 2D behavior as seen in experiments.
In Section 4, we adapt these results to model projectile deceleration due to reaction forces from the

membrane. This deceleration has two regimes: first is sudden momentum transfer from blunt inelastic

impact, and second is more gradual deceleration due to smooth energy transfer into the fabric in terms of

kinetic energy and stored elastic energy. The analytical results obtained allow us to develop insight into

various aspects of the impact event, such strain history in the fabric, evolution of the impact cone radius

and its deflection by the projectile over time, including the distance needed to stop the projectile. Other

results are the ‘‘V50’’ velocity at the threshold for perforation and exit or residual velocity, Vres, after per-
foration at velocities above this threshold. Key scalings are revealed in terms of naturally arising dimen-
sionless variables, and most of the results are explicit and require no numerical solution.

In Section 5, we use these results to model the response of a biaxial fabric system under transverse

impact. We theoretically justify a dimensionless variable framework developed by Cunniff (1999b) to reduce

V50 data for diverse fabric systems onto one ‘‘master curve’’. We obtain an explicit functional form, valid for

all fabric to projectile areal density ratios. Our form additionally shows very minor dependence on the

fabric failure strain. This functional form explicitly captures the strain concentration that develops in the

fabric adjacent to the projectile, especially at lower areal density ratios. This feature is not approachable

using 1D models.
In Section 6, we discuss the results on stress concentration and cone growth behavior, and briefly

compare the predictions of the model to various experimental results in the literature. We obtain startlingly

strong agreement despite only one adjustable parameter beyond fiber property values set already in the

source literature. This parameter, which adjusts effective projectile diameter, is surprisingly constant across

material systems. We also briefly discuss issues of momentum transfer, heat generation and rounded

projectile tips. Section 7 presents some conclusions on further implications of the model with respect to

misconceptions in the literature.

2. Assumptions and formulation of the 2D membrane impact problem

We consider the deformation over time t > 0 of a thin membrane due to impact by a right circular
cylinder at time t ¼ 0. This flat-nosed projectile with cylinder radius rp and diameter Dp ¼ 2rp, and mass Mp

travels at velocity Vp perpendicular to the membrane, and contact occurs over an area Ap ¼ pr2p ¼ pD2
p=4.

The membrane is initially untensioned and of infinite extent, and has quasi-isotropic, linearly elastic

properties in plane. Its tensile modulus is E, Poisson�s ratio is m, thickness is h, and density is q per unit

volume. Because the tensile stresses are very large and the membrane is viewed as thin and fibrous, we

neglect any compressive hoop stresses and associated Poisson effects since the fibers and yarns will locally

buckle to relieve them. Fig. 2 illustrates some aspects of the geometry.

Modern ballistic fabrics to which the theory applies have a very low failure strain, (emax 6 0:05), high
tensile stiffness (E > 50 GPa) and low density (q < 2 g/cm2). Thus they have a very high tensile wave speed,



Fig. 2. Illustration of variables and geometry of the membrane impact problem: (a) the flow of membrane material towards the impact

at velocity _uu lowers the cone edge wave speed, ~cc, in ground coordinates compared to the value, c, in material (Lagrangian) coordinates.

This material flow also allows large cone angles, c. (b) Illustration of the cylindrical coordinate system ðr;/; yÞ and displacements ðu; vÞ.
In a 2D membrane the cone shape has curvature as in (b).
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which is an order of magnitude larger than projectile velocities of interest or the transverse wave speed of

the growing deformation cone from impact. This allows us to make important simplifications in the pro-
jectile deceleration analysis.

In our first analysis we assume the projectile velocity Vp remains constant in time. A strain concentration

rapidly develops in the membrane near the projectile, so the regime after impact over which the base of the

impact cone grows a few projectile diameters in size is practically important. Our solution involves the

development of several self-similar solution forms that combine to yield an accurate and insightful de-

scription of the behavior experimentally seen. We then extend the analysis to a decelerating projectile due to

reactive forces from the membrane. A strain concentration develops but reaches a maximum and sub-

sequently decays depending on the ratio of the fabric mass to the projectile mass in the area of first contact.
Expressing pessimism, Rakhmatulin and Dem�yanov (1961) claimed that neglecting hoop stresses to

simplify the analysis leads to unrealistic and indeed ‘‘absurd’’ results. This is a misdiagnosis that is largely

the result of overlooking the importance of a special self-similar solution for the initial formation of the

expanding tensile wave in the fabric plane. This solution allows a crucial strain jump at the outward ra-

diating tensile wave front as occurs in easier 1D analysis. Without it, instantaneous membrane failure and

perforation is predicted no matter how small the projectile velocity, Vp, which Rakhmatulin and Dem�yanov
(1961) rejected. We find that whether or not hoop stresses are neglected is irrelevant.
2.1. Fundamental partial differential equations under constant projectile velocity

We assume axisymmetric deformation of the membrane, and work with cylindrical coordinates (r;/; y)
shown in Fig. 2(b). At time t ¼ 0 we let r and / be the initial radial and circumferential location of a fabric
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point in the infinite, untensioned membrane lying at rest in the level ground plane y ¼ 0. A time t after
impact, we let u and v be the in-plane and normal, out-of-plane components, respectively, of the dis-

placement of this point, but its cylindrical angle / remains the same. The new coordinates of the fabric

point now become (r þ u;/; 0þ v) as shown in Fig. 2(b). Formulation of the two governing partial dif-
ferential equations for membrane displacement will largely follow that in Rakhmatulin and Dem�yanov
(1961).

Consider a membrane element initially of volume hrdrd/, where h is its initial thickness and q is its

initial density. Conservation of mass of the element during deformation requires
qhrdrd/ ¼ �qq�hhðr þ uÞð1þ etÞdrd/ ð1Þ
where �qq and �hh and ð1þ etÞdr are, respectively, its current density, thickness and length, and where et is its
local in-plane strain oriented radially. This strain is given by
et ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ou=orÞ2 þ ðov=orÞ2

q
� 1 ð2Þ
since the element may lie out of plane after deformation. The circumferential hoop strain e/ is
e/ ¼ u=r ð3Þ

At a given instant, forces act on the element locally in plane but radially oriented, these being
��rrt

�hhðr þ uÞd/ and �rrt
�hhðr þ uÞd/þ ½oð�rrt

�hhðr þ uÞÞ=or�drd/ where �rrt is the true stress. There is also a re-

sultant force from circumferential (hoop) stresses resolved in the radial direction parallel to the ground

plane and given by ��rr/
�hhð1þ etÞdrd/ where �rr/ is the true hoop stress. Resolving these forces parallel to

and perpendicular to the ground plane (y ¼ 0), respectively, and using conservation of momentum leads to
qhrdrd/
o2u
ot2

¼ o

or
�rrt
�hhðr

h
þ uÞ cos c

i
drd/� �rr/

�hhð1þ etÞdrd/ ð4Þ
and
qhrdrd/
o2v
ot2

¼ o

or
�rrt
�hhðr

h
þ uÞ sin c

i
drd/ ð5Þ
where c is the angle between the local tangential surface to the membrane element and the ground plane,

y ¼ 0. We let rt and r/ be the �engineering� stresses corresponding, respectively, to �rrt and �rr/. Comparing

areas before and after deformation gives
rt ¼ �rrt
�hhðr þ uÞd/=ðhrd/Þ ð6Þ
and
r/ ¼ �rr/
�hhð1þ etÞdr=ðhdrÞ ð7Þ
Combining Eqs. (4)–(7) results in the two governing partial differential equations
qo2u=ot2 ¼ ð1=rÞoðrtr cos cÞ=or � r/=r ð8Þ
and
qo2v=ot2 ¼ �ð1=rÞoðrtr sin cÞ=or ð9Þ
where
cos c ¼ ð1þ ou=orÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ ou=orÞ2 þ ðov=orÞ2
q

ð10Þ
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and
sin c ¼ � ðov=orÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ ou=orÞ2 þ ðov=orÞ2
q

ð11Þ
The stresses and strains are related by
rt ¼ ½E=ð1� m2Þ�ðet þ me/Þ ð12Þ

and
r/ ¼ ½E=ð1� m2Þ�ðe/ þ metÞ ð13Þ

A crucial quantity is the speed of tensile waves in the membrane radiating outward in plane. This wave-

speed, a0, is given by a20 ¼ E=½qð1� m2Þ�. To greatly simplify the upcoming analysis of cone deflection, we

neglect Poisson�s ratio, m, in the governing equations. In the tensile wave region outside the cone, it so

happens that m appears in the governing equations, only through a0. For materials of interest, 06 m6 0:3, so
neglecting m in a0 results in less than 5% error. Thus we neglect Poisson�s ratio throughout and take
a0 ¼
ffiffiffiffiffiffiffiffiffi
E=q

p
ð14Þ
Initially we retain the hoop stress term to see what its influence might be, but since all hoop stresses will
prove to be compressive we neglect them. Membranes and fabrics do not support significant in-plane

compressive stresses as the constituent wavy yarns will buckle.

In terms of et and a0, the governing equations (8) and (9), now become
1

a20

o2u
ot2

¼ 1

r
o

or
ðetr cos cÞ �

u
r2

h i�
ð15Þ
and
1

a20

o2v
ot2

¼ � 1

r
o

or
ðetr sin cÞ ð16Þ
where the symbol ½��� means the quantity is kept only if positive. These equations, together with Eqs. (10)

and (11) for the angle c, constitute the system to be solved.

An important simplification is the 1D model where the material still has initial thickness h and density q
but is formed into n equispaced, radial spokes of constant cross-sectional area pr2ph=n. The total cross-

sectional area of material at radial distance r is pr2ph, the same as at the projectile edge rp, and also in the 2D
membrane model at radius rp. Just two spokes yields the problem of 1D impact onto a tape. Thus taking

r ¼ rp, Eqs. (15) and (16) collapse to
ð1=a20Þo2u=ot2 ¼ oðet cos cÞ=or ð17Þ

and
ð1=a20Þo2v=ot2 ¼ �oðet sin cÞ=or ð18Þ
3. Solution of governing partial differential equations

As key steps in solving the 2D membrane impact problem, we recognize two distinct zones: (i) a tensile

‘‘implosion’’ zone representing in-plane deformation whereby material behind the radially expanding,

tensile wave front is drawn towards the origin at velocity _uu, where j _uuj � a0; (ii) an expanding curved conical
zone with outer edge wave front traveling at velocity c relative to the original material (Lagrangian) co-

ordinates; its speed relative to ground is ~cc ¼ cþ _uu < c since the cone grows in fabric material traveling
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towards the origin. We find that Vp < c � a0, and c turns out to be remarkably constant over the pro-

pagation regime of interest except for a very brief transition where c jumps a few percent from an initial

value, c0, calculated also from the 1D problem. The strategy is to first solve (i) and (ii) separately, and then

match their solutions through mutual boundary conditions at the propagating cone edge.

3.1. Radial tension wave analysis associated with ‘implosion’

In considering possible self-similar solutions to the radially expanding tensile wave, we work with the

distance variable s rather than time t where
s ¼ a0t þ rp ¼ a0ðt þ�ttpÞ ð19Þ

and �ttp ¼ rp=a0 is the time it takes for the tension wave to travel distance rp, the projectile cylinder radius.

Note that s is the position of the tension wave front. The time shift, �ttp, is essential to obtaining a match to

the emerging cone wave at the projectile edge when t ¼ 0.

Beyond the conical wave front we have c ¼ 0 and ou=or ¼ et so Eq. (15) reduces to
o2u
os2

¼ 1

r
o

or
r
ou
or

� �
� u

r2

h i�
ð20Þ
while Eq. (16) for v vanishes. Eq. (20) applies to the region rc < r6 a0t þ rp, where rc ¼ rcðtÞ is the position
of the cone wave front. We search for self-similar solutions of the form
u ¼ ub ¼ lsbUbðfÞ ð21Þ

where f ¼ r=s, and b and l are constants. Substitution of Eq. (21) into Eq. (20) yields
f2ð1� f2ÞU 00
b � f2ð1� bÞf3 � fgU 0

b þ bð1� bÞf2Ub � ½Ub�� ¼ 0 ð22Þ
where for the time being we take the lower limit to be zero so that 0 < f6 1.

Following Grigoryan (1949), we first consider b ¼ 1, whereby Eq. (22) reduces to
f2ð1� f2ÞU 00
1 þ fU 0

1 � ½U1�� ¼ 0 ð23Þ

Neglecting ½U1�� since U1 is negative, and integrating the first-order equation in U 0

1 yields
U 0
1ðfÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q �
f ð24Þ
where the constant of integration is conveniently chosen as unity. Integrating once more and setting

u1ð1Þ ¼ 0 at the wave front (to avoid a displacement jump) results in
U1ðfÞ ¼ ln f

�
� ln 1

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q �
ð25Þ
Thus the form of the displacement for b ¼ 1 is
u1 ¼ ls ln f

�
� ln 1

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q �
ð26Þ
and the associated radial strain is
ou1=or ¼ lU 0
1ðfÞ ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q �
f ð27Þ
While b ¼ 1 might seem to be the natural choice, the strain given by Eq. (27), approaches zero at the

wave front rather than a constant as will occur in 1D. Thus the b ¼ 1 solution disallows a strain jump (and
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velocity jump) behind the tensile wave front. Thus, at the instant of projectile impact, membrane material

will not initially be fed towards the projectile edge to allow for infinitesimal emergence of a cone-shaped

deformation section, causing an instantaneous strain singularity implying perforation no matter how small

Vp. Apparently this was a key concern of Rakhmatulin and Dem�yanov (1961), though they did not pursue
other solutions.

Regarding another comment of Rakhmatulin and Dem�yanov (1961), it so happens that even if com-

pressive hoop stresses are permitted, i.e., �r/=r is kept in Eq. (8), similar behavior still results. Making the

variable change 1 ¼ f2, whereby the differential equation can be integrated in similar fashion, and then

returning to the original variables, we obtain,
uh ¼ lsf ln 1

��
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q �
� ln f�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q �
f2
�

ð28Þ
with the strain being
ouh=or ¼ l ln 1

��
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q �
� ln fþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q �
f2
�

ð29Þ
Again the strain is zero just behind the wave front so retaining hoop stresses does not help.

Thus we must seek solutions to Eq. (22) for other values of b, which is more difficult, so we seek

Frobenius series solutions in powers of f, as described, for example, in Boyce and DiPrima (1997). We first

solve the associated Euler equation
f2 eUU 00
b þ f eUU 0

b ¼ 0 ð30Þ
and trying a solution of the form eUUb ¼ cfq yields the indicial equation q2 ¼ 0 and Euler solution
eUUb ¼ c0 þ c1 ln f ð31Þ
Thus a Frobenius series solution is of the form
Ub ¼ c0ð1þ a1fþ a2f
2 þ � � �Þ þ c1 ln fð1þ b1fþ b2f

2 þ � � �Þ ð32Þ
where coefficients ai and bi, depend on b and must be determined recursively.

This result does not reveal the strain behavior near f ¼ 1, nor whether or not c0 must be zero to satisfy

ubð1Þ ¼ 0. Thus near f ¼ 1, we making the variable change, g2 ¼ 1� f2, in Eq. (22), and appreciating that
Ub will be negative so ½Ub�� vanishes, Eq. (22) takes the form
ð1� g2Þg2 d2Ub=dg
2 þ ½2ð1� bÞð1� g2Þ � 2�gdUb=dgþ ½bð1� bÞ�g2Ub ¼ 0 ð33Þ
The associated Euler equation is now
g2 d2 eUUb=dg
2 � 2bgd eUUb=dg ¼ 0 ð34Þ
and trying eUUb ¼ cgq leads to the indicial equation qðq� ð1þ 2bÞÞ ¼ 0. Thus the Euler solution is
eUUb ¼ c00 þ c01g
1þ2b ð35Þ
provided b 6¼ �1=2, which is not of interest. The Fobenius solution for Ub, upon making the replacement

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p
, is of the form
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UbðfÞ ¼ c01 1

 
þ d1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q� �
þ d2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q� �2

þ � � �
!

þ c02 1

 
þ e1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q� �
þ e2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q� �2

þ � � �
!
ð1� f2Þbþ1=2 ð36Þ
where di and ei depend on b. Also ubð1Þ ¼ 0 requires c01 ¼ 0 and taking c02 ¼ �1, Eq. (21) yields
ub ¼ �lsb 1

 
þ e1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q� �
þ e2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q� �2

þ � � �
!
ð1� f2Þbþ1=2 ð37Þ
For the strain, notice that
oub=or ¼ l2ðbþ 1=2Þsb�1fð1� f2Þb�1=2
1

�
þO

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q� ��
ð38Þ
so oub=or ! 0 as f ! 1 for b > 1=2 but diverges for b < 1=2. For b ¼ 1=2 we find
u1=2 ¼ �ls1=2 1

 
þ e1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q� �
þ e2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q� �2

þ � � �
!
ð1� f2Þ ð39Þ
and
ou1=2=or ¼ 2ls�1=2f 1

�
þO

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q� ��
ð40Þ
Thus the strain approaches a constant as f ! 1, i.e., just behind the wave front but dies out as s�1=2 as the

wave front grows. Thus we need bP 1=2 to avoid singular strains at the wave front.
Returning to Eq. (30) for b ¼ 1=2, it turns out that an extremely accurate approximation is
u1=2 � ls1=2 ln f ð41Þ
with the strain being
rr=E ¼ ou1=2=or ¼ ls�1=2=f ð42Þ
Substitution of Eq. (41) into Eq. (20) reveals that an added hoop-stress body force distribution
r/=E ¼ e/ ¼ ð1=4Þls�1=2f ln f ð43Þ

is sufficient to result in Eq. (41) exactly. Remarkably, this hoop contribution turns out to be negligible since

the ratio r/=rr is less than 0.05 for all 0 < f6 1, and is zero for f ¼ 0 and 1.

For fixed f or r, whereas the special b ¼ 1=2 solution, u1=2, decays relative to the b ¼ 1 solution, u1, as
s�1=2, it is nonetheless essential to modeling strain behavior just after impact. Rakhmatulin and Dem�yanov
(1961) mentioned behavior consistent with u1=2 but only right on the sonic wave front r ¼ s or f ¼ 1. The

role of u1=2 behind the wave front f < 1 apparently was ignored. Remarkably, if one combines the b ¼ 1=2
and b ¼ 1 solutions in the form
u ¼ H1u1 þH2u1=2 ð44Þ
where H1 � H2 � 1, the resulting behavior differs little from the simple form
~uu ¼ ls ln f ð45Þ
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The associated strain and particle velocity, respectively, become
o~uu=or ¼ l=f ð46Þ

and
_~uu~uu � o~uu=ot ¼ a0o~uu=os ¼ a0lðln f� 1Þ ð47Þ

This solution has the required jumps in strain and particle velocity at the wave front. Furthermore it can be

shown that if Eq. (20) is differentiated with respect to r to yield a partial differential equation in radial

strain, Eq. (45) is a solution. It is not, however, directly a solution to Eq. (20) without adding a modest

body force term that fortunately, does not affect the strains.

In the case of the 1D model with the radially expanding tension wave, Eq. (17) reduces to
o2u=os2 ¼ o2u=or2 ð48Þ

compared to Eq. (20) in 2D, and Eq. (18) for v vanishes. Substituting Eq. (21) yields
ð1� f2ÞU 00
b þ 2ðb� 1ÞfU 0

b � bðb� 1ÞUb ¼ 0 ð49Þ

for general b where 0 < f6 1. For b ¼ 1, Eq. (49) simplifies to
ð1� f2ÞU 00
1 ¼ 0 ð50Þ
and since 1� f2 6¼ 0 except at f ¼ 1 we must have U 00
1 ¼ 0, which integrates to give
U1 ¼ A1 þ A2f ð51Þ

where A1 and A2 are constants. To avoid a displacement jump at the tensile wave front that would imply

tape failure, we need U1ð1Þ ¼ 0 requiring A2 ¼ �A1 ¼ 1 so that
U1 ¼ �ð1� fÞ ð52Þ

The corresponding strain is
ou1=or ¼ oðlsU1Þ=or ¼ lU 0
1 ¼ l ð53Þ
which is a constant, and designating the strain l as et, Eqs. (21) and (52) yield
u1 ¼ lsU1ðfÞ ¼ �etsð1� fÞ ð54Þ

The velocity of material behind the wave front is
_uu1 � ou1=ot ¼ a0etfU1ðfÞ � fU 0
1ðfÞg ¼ �a0et ð55Þ
In 1D, other values of b turn out to be physically irrelevant to constant velocity impact. The case b ¼ 0

yields unbounded displacements at the wave front. For other values 0 < b < 1, a Frobenius series solution

in Eq. (49) together with the change of variable g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p
yields a singular strain at the wave front

implying instant failure. For b > 1 the displacement and the strain decay to zero as f ! 1, as does the

material velocity, _uub � oub=ot, towards the impact point. These features are incompatible with the required

velocity flow of material into the edge of the impact cone or triangle allowing it to develop behind the
tension wave with finite strain.

In 1D, the case b ¼ 1 is special in that there is a negative velocity jump as well as a strain jump at the

tensile wave front from zero ahead of it to et behind it. A self-similar solution with displacements pro-

portional to time might seem obvious as the only solution relevant to constant projectile velocity. For the

2D membrane, however, the case b ¼ 1=2 is the relevant one at early times, and the case b ¼ 1, becomes

important somewhat later. The approximate solution, Eq. (45), captures both features: A small distance

back from the tensile wave front, but in front of the cone wave front, Eq. (45) quickly takes on the behavior

of Eq. (26). Right near and at the tensile wave front, however, it has the behavior of Eq. (41) just long
enough to allow the cone wave to emerge with locally finite strain. We will find that as the impact cone
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emerges from the projectile edge, within one projectile radius rp of cone growth a sharp transition zone

exists where the cone edge velocity rapidly rises from an initial 1D value, but then stabilizes to almost

constant behavior. The membrane strain is not infinite upon impact but actually begins with 1D like be-

havior before increasing rapidly, with a strain concentration emerging and continuing to grow adjacent to
the projectile. Not accounting for such features seems to be at the heart of the pessimism expressed by

Rakhmatulin and Dem�yanov (1961).

For the 2D membrane, we use the approximate solution, Eq. (45), as the primary solution for the in-

plane, implosion wave and match boundary conditions with the growing cone wave just after impact. In our

impact problem, tensile tractions and displacements must be properly matched at the edge of the growing

deformation cone, especially just after impact. The later success of the approximation, Eq. (45), suggests

that the actual solution u under constant projectile velocity Vp may well be a weighted integral over

1=26 b6 1 of solutions ub with the endpoints, 1/2 and 1, strongly dominating. Pursuit of this feature,
however, is not necessary for us to achieve accurate results, because of the overwhelming dominance of the

rapid transition.
3.2. Self-similarity transformation and cone wave analysis

Following impact on the membrane, a curved-sided, truncated cone develops in the wake of the tensile

implosion wave, the latter supplying the necessary displacements at the cone outer edge to allow large cone

angles. The key is to seek a self-similar solution based on the cone wave front velocity, c, rather than the

tension wave velocity, a0, assuming c is constant. Under constant projectile velocity, Vp, we will find that c is
not quite constant, but is very close to constant after an extremely short transition region of growth where c
rapidly jumps up from the starting 1D value, denoted c0. A slightly varying c in the self-similar solution still

yields an extremely accurate representation of impact behavior since Vp=a0 < c=a0 � 1, thus permitting the

strains and other quantities to rapidly self-adjust. We are ultimately interested in an analysis of deceleration

of the projectile due to reactive forces of the membrane, so following the transition after impact, the cone

wave speed c will decrease fairly rapidly tending to offset the increase mentioned above. We proceed here

under the assumption that c is constant.

We let a ¼ c=a0 be the ratio of cone wave speed to tension wave speed and develop a self-similar solution

in terms of the cone wave, travel distance variable
z ¼ ct þ rp ¼ aa0ðt þ tpÞ ð56Þ
where tp ¼ rp=c, is the time it takes for the cone wave to travel the distance rp. Note that tp ¼ �ttp=a so the

time shifts are different for the tension and cone waves. However, this relationship will allow us to properly

match the mutual boundary conditions of the two waves as the leading edges of both coincide at the edge of

the projectile at rp at the time of impact, t ¼ 0. Note that z can also be interpreted as the position of the cone

wave front, rc, at time t.
In terms of z rather than t, the partial differential equations (15) and (16) become
a2
o2u
oz2

¼ 1

r
o

or
ðetr cos cÞ ð57Þ
and
a2
o2v
ot2

¼ � 1

r
o

or
ðetr sin cÞ ð58Þ
with Eqs. (10) and (11) for cos c and sin c unchanged. Henceforth we neglect the square bracketed term in
Eq. (15) since the displacement u is negative. We let
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X ðnÞ ¼ ðuþ rÞ=z ¼ ðu=rÞnþ n ð59Þ

and
Y ðnÞ ¼ v=z ¼ ðv=rÞn ð60Þ
where n ¼ r=z. We interpret X and Y as the new positions of a fabric particle originally at r in undeformed

fabric. Then in these normalized coordinates (in terms of material rather than ground coordinates) the cone
wave front or base radius rc coincides with n ¼ 1 and the radius of the projectile inside which fabric contact

occurs is np ¼ rp=ðasÞ. Thus we obtain solutions for the region np 6 n6 1. Knowing X ðnÞ and Y ðnÞ, we can
obtain the displacements u and v.

First we substitute Eqs. (59) and (60) into Eqs. (2), (10), (11), (57) and (58), and using the notation

ð�Þ0 � dð�Þ=dn we obtain
a2n3X 00ðnÞ ¼ ðnet cos cÞ0 ð61Þ
and
a2n3Y 00ðnÞ ¼ �ðnet sin cÞ0 ð62Þ
where
sin c ¼ � Y 0ðnÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X 0ðnÞ2 þ Y 0ðnÞ2
q

ð63Þ
and
cos c ¼ X 0ðnÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X 0ðnÞ2 þ Y 0ðnÞ2
q

ð64Þ
and et is the local membrane strain (perpendicular to the circumferential direction) given by
et ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 0ðnÞ2 þ Y 0ðnÞ2

q
� 1 ð65Þ
It is convenient to let
R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 0ðnÞ2 þ Y 0ðnÞ2

q
¼ et þ 1 ð66Þ
Multiplying the equations in X 00 and Y 00 by X 0 and Y 0, respectively, and using the fact that

ðX 02Þ0 ¼ 2X 0X 00(and likewise for Y ) and then adding the two resulting equations leads to
a2n3R0 ¼ R� 1þ nR0 ð67Þ

Because et ¼ R� 1 and R0 ¼ ðR� 1Þ0 this can be written as
nð1� a2n2Þe0t þ et ¼ 0 ð68Þ

This same exercise also yields key differential equations for X and Y , which are
nð1� a2n2ÞX 00 þ X 0 ¼ ðnX 0=RÞ0 ð69Þ

and
nð1� a2n2ÞY 00 þ Y 0 ¼ ðnY 0=RÞ0 ð70Þ

These can be manipulated to yield
a2n3X 00 ¼ ðnðR� 1ÞX 0=RÞ0 ð71Þ
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and
a2n3Y 00 ¼ ðnðR� 1ÞY 0=RÞ0 ð72Þ

In 1D the same procedure yields simpler differential equations, namely
nð1� a2n2Þe0t ¼ 0 ð73Þ

together with
a2n2X 00 ¼ ððR� 1ÞX 0=RÞ0 ð74Þ

and
a2n2Y 00 ¼ ððR� 1ÞY 0=RÞ0 ð75Þ

which are much easier to solve.

3.3. Solution for radial and transverse displacement functions for small strains

In 2D we first solve Eq. (68) for et to yield R, and then to solve Eqs. (71) and (72) for X and Y , re-
spectively. Solving for et is straightforward since Eq. (68) can be directly integrated to yield
Z

det
et

¼ �
Z

dn

nð1� a2n2Þ
¼ 1

2

Z
dð1� w2Þ
1� w2

�
Z

dw
w

ð76Þ
where w ¼ an. Thus
ln et ¼ ð1=2Þ lnð1� w2Þ � lnwþ lnC ð77Þ

which is equivalent to
et ¼ C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2n2

q �
ðanÞ ð78Þ
where C is a constant of integration. At the outer cone edge, n ¼ 1, we define ec � etð1Þ, which is matched

with a like strain quantity from the implosion plane-wave solution. We then have
et ¼
ec
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2n2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p ¼ ec
n

1

�
þ a2

2
ð1� n2Þ þ 3a4

8
ð1� n4Þ þ � � �

�
; np 6 n6 1 ð79Þ
At the projectile edge we define ep � etðnpÞ and this is the maximum strain in the membrane. We discover

that we must have a2 ¼ ep < emaxnp to avoid membrane failure and perforation, where typically emax < 0:05
for materials of interest. Thus Eq. (79) is approximately
etðnÞ � ec=n; np 6 n6 1 ð80Þ
with less than 1% error. In what follows we assume this condition is satisfied.

Next we solve Eq. (72) for Y and first note from the above that
R ¼ 1þ et � 1þ ec=n ð81Þ
which upon substitution into Eq. (72) yields
a2n3Y 00 � fecnY 0=ðnþ ecÞg0 ð82Þ
Carrying out the differentiation on the right-hand side and rearranging the result yields
nðnþ ecÞfa2n2ðnþ ecÞ � ecgY 00 � e2cY
0 � 0 ð83Þ
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In preparation for integration, this may be rewritten as
dY 0=Y 0 � ðec=aÞ2 dn=fnðnþ ecÞðn3 þ ecn
2 � ec=a

2Þg ð84Þ
where it then becomes necessary to factor the cubic using well-known formulas. Recognizing the maximum

strain constraint above, we obtain the accurate approximation
n3 þ ecn
2 � ec=a

2 � ðnþ ec=3Þ3 � u3 ð85Þ
where
u ¼ ðec=a2Þ1=3 ð86Þ

In the above differential, making the respective substitutions nþ ec � nþ ec=3, and n � nþ ec=3 will not

affect the results of integration since to avoid perforation, ec=emax 6 np 6 n6 1 and typically emax < 0:05.
Thus we may reduce our differential approximation, Eq. (84), to
dð�Y 0Þ=ð�Y 0Þ � �ecu
3 dn=fðnþ ec=3Þ2½u3 � ðnþ ec=3Þ3�g ð87Þ
in anticipation that nþ ec=36u for np 6 n6 1, and that Y 0 will be negative since the cones slope is negative.

Eq. (87) decomposes as
Z
dð�Y 0Þ=ð�Y 0Þ � �ec

Z
dn=ðnþ ec=3Þ2 � ec

Z
ðnþ ec=3Þdn=fu3 � ðnþ ec=3Þ3g ð88Þ
and carrying out the integration results in
lnð�Y 0Þ � ec
nþ ec=3

� ec
6u

ln
u3 � ðnþ ec=3Þ3

½u� ðnþ ec=3Þ�3

( )
þ ecffiffiffi

3
p

u
tan�1 2ðnþ ec=3Þ þ uffiffiffi

3
p

u

� �
þ ln j1 ð89Þ
where j1 is a constant of integration to be determined later. Exponentiation gives
Y 0 � �j1 exp
ec

nþ ec=3

� �
½u� ðnþ ec=3Þ�3

u3 � ðnþ ec=3Þ3

( )ec=6u

exp
1ffiffiffi
3

p ec
u

tan�1 2ðnþ ec=3Þ þ uffiffiffi
3

p
u

� �� �
ð90Þ
To interpret this result, we first assert (with later comment) that u � 1þ ec=3, since this will ensure no
singularity in Y 0 except at the end point n ¼ 1. From this we see that
ec=a
2 ¼ ð1þ ec=3Þ3 � 1þ ec ð91Þ
yielding
a ¼ c=a0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ec=ð1þ ecÞ

p
ð92Þ
for the transverse wave speed c of the cone edge. In subsequent analysis a � ffiffiffiffi
ec

p
will suffice.

Whereas the result above for Y 0 appears complicated, it has a very simple approximation. To avoid

perforation we require ec 6 emaxnp 6 0:05np, and for the cone edge, rc ¼ rp=np, to grow even a modest dis-

tance we must have ec < 0:01. In that case the exponential factor in Y 0 with the inverse tangent deviates

from unity by only 1% over the range np 6 n6 1 irrespective of np. Also, since ec=ð6uÞ � 0:01, the middle
factor is unity to within 1% over np 6 n6 0:99. It then rapidly drop to zero as n ! 1, which implies that the

membrane slope, Y 0, approaches zero as r ! rc, a feature seen experimentally but of no practical conse-

quence in the analysis. Finally, there is virtually no loss in accuracy in replacing nþ ec=3 with n in the first

exponential, whose form also implies mild cone curvature. Thus, an extremely accurate approximation is
Y 0 � �j1 e
ec=n ð93Þ
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The same analysis works on Eq. (61) except that X 0 is positive. Consequently we get
X 0 � j2 e
ec=n ð94Þ
Next we develop a relationship between j1 and j2, which are not independent. Since R ¼ 1þ et �
1þ ec=n, we develop Taylor series expansions for X 0 and Y 0 to find that
1þ ec=n �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2
1 þ j2

2

q
ð1þ ðec=nÞ þ ð1=2Þðec=nÞ2 þ � � �Þ ð95Þ
so to very high accuracy
j2
1 þ j2

2 � 1 ð96Þ

We can integrate Eqs. (93) and (94) to get Y and X , respectively, and from geometric considerations the out

of plane displacement at the projectile edge must be that of the projectile nose, and the in plane dis-

placement must be zero (i.e., X ðnpÞ ¼ np). Thus we can write
X � j2

Z n

np

eec=w dwþ np ð97Þ
and
Y � j1

Z 1

n
eec=w dw ð98Þ
The variable change x ¼ 1=w gives an integral that can be evaluated to produce the series
Z
ðeecx=x2Þdx ¼ �eecx=xþ ec ln xþ e2cxþ � � � ð99Þ
Thus X and Y become
X ðnÞ � j2fneec=n � np e
ec=np þ ecðln n� ln npÞ þ e2cð1=np � 1=nÞ þ � � �g þ np ð100Þ
and
Y ðnÞ � j1feec � neec=n � ec ln nþ e2cð1=n� 1Þ þ � � �g ð101Þ
respectively, for np 6 n6 1. We can also expand the exponential in this last result to obtain
Y ðnÞ � j1fð1� nÞ � ec ln nþ ðe2c=2Þð1=n� 1Þg ð102Þ
to very high accuracy. This result also suggests small cone curvature.

The displacement components u and v are u ¼ zX ðr=zÞ � r and v ¼ zY ðr=zÞ, where z ¼ ct þ rp ¼
aa0ðt þ tpÞ. We must still evaluate the constants j1 and j2 from the initial and boundary conditions right
after projectile impact, as is done next.

In 1D a similar analysis leads to that fact that et is a constant and Eq. (75) yields
ða2n2 � et=ð1þ etÞÞY 00 ¼ 0 ð103Þ

The term in brackets cannot be zero so solving Y 00 ¼ 0 gives
Y ¼ C1 þ C2n ð104Þ

where C1 and C2 are constants to be evaluated. A similar analysis of Eq. (74) gives
X ¼ D1 þ D2n ð105Þ

where D1 and D2 are also constants to be evaluated. The quantity in brackets in Eq. (103) is claimed to be
zero right at n ¼ 1 as this leads to a completely consistent solution that will satisfy the differential equation

and boundary conditions. This claim can be verified more elaborately using the method of characteristics
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on the system of partial differential equations as in Rakhmatulin and Dem�yanov (1961), or Craggs (1954).

Thus the wave speed ratio a satisfies
a ¼ c=a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ec=ð1þ ecÞ

p
ð106Þ
which is the same as Eq. (92) for the 2D membrane, except in the 1D case the strain is constant, i.e.,

et ¼ ec ¼ ep, so a and c are constant in time (for constant velocity impact). In 2D a shows a rapid rise before

the cone has grown in diameter by one projectile width.

3.4. Determining j1 and j2 from initial and boundary conditions

In 2D we are particularly interested in Y ðnpÞ and X ð1Þ � 1, which represent the projectile and cone inner

edge displacement and the displacement towards the origin of membrane material near the cone outer edge
(i.e., amount of extra membrane material fed into the cone). The latter allows the frequently observed, large

cone surface angles without exceeding the strain limit of the membrane. Expanding in Eq. (100) yields the

extremely accurate approximation
X ð1Þ � 1 � j2fð1� npÞ � ec ln np þ ðe2c=2Þð1=np � 1Þ þ � � �g � ð1� npÞ ð107Þ
and Eq. (102) yields
Y ðnpÞ � j1fð1� npÞ � ec ln np þ ðe2c=2Þð1=np � 1Þ þ � � �g ð108Þ
Following impact we must match the displacement of the top of the truncated cone to the projectile

velocity multiplied by the elapsed time from impact. Since we are working with a self-similar solution for the

growing cone, in terms of time t þ tp, we in effect account for its virtual growth from the origin (r ¼ 0) at

time t ¼ �tp until the base reaches radius rp at time t ¼ 0. Up to that time there is no physical cone so the

impact time corresponds to the cone wave front coinciding with r ¼ rp when np ¼ 1. Matching displace-

ments gives Vpt ¼ ðrp=npÞY ðnpÞ or

Vpt ¼ ðrp=npÞj1f1� np � ec ln np þ ðe2c=2Þð1� npÞ=np þ � � �g ð109Þ
However, np ¼ rp=rc and rc ¼ z ¼ ct þ rp so we can rewrite this as
ðVp=cÞðrc � rpÞ ¼ j1rcfðrc � rpÞ=rc þ ec lnðrc=rpÞ þ ðe2c=2Þðrc � rpÞ=rc þ � � �g ð110Þ
Due to our constraints on maximum strain, the last term on the right is most certainly negligible; the second

term, though also very small, is retained since it will have an appreciable effect on the results due to certain

cancellation effects in other terms. Thus we rewrite the above result as
ðVp=cÞðrc � rpÞ � j1ðrc � rpÞf1þ ec½rc=ðrc � rpÞ� lnðrc=rpÞg ð111Þ
Canceling rc � rp from both sides and noting 1=ð1þ wÞ ¼ 1� wþ w2 � � � � we approximate j1 as
j1 �
Vp
c

1

�
� ec

rc
rc � rp

� �
ln

rc
rp

� ��
¼ Vp

c
1

�
� ec

rc
rp

� �
lnð1þ ðrc � rpÞ=rpÞ

ðrc � rpÞ=rp

�
ð112Þ
where there is no need for additional terms to retain accuracy. Indeed since
ecðrc=rpÞ ¼ ðrc=npÞ < 0:05 ð113Þ
and for rc > rp
lnð1þ ðrc � rpÞ=rpÞ < ðrc � rpÞ=rp ð114Þ
the second term in the curly brackets can never be more than 5% of the total as perforation would occur

first. For instance if perforation occurs when rc ¼ 1:5rp, then lnð1:5Þ=0:5 ¼ 0:810 so the second term is at
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most 4% of the total. On the other hand if rc ¼ 10rp when perforation occurs, then lnð10Þ=9 ¼ 0:256 so the

second term is only about 1% of the total. One sees that j1 � Vp=c.

3.5. Displacements and inflow of membrane at the cone edge

Next we calculate the displacement (inflow of membrane material) at the cone edge, which we call uc and
note that uc ¼ rcfX ð1Þ � 1g or
uc � �rcð1� j2Þð1� npÞ � rcj2fec ln np � ðe2c=2Þð1=np � 1Þg ð115Þ
As before we can neglect the last term and noting np ¼ rp=rc rewrite the above as
uc � �ðrc � rpÞð1� j2Þ � rcj2ec lnðrp=rcÞ ð116Þ

Earlier we established that j2

1 þ j2
2 ¼ 1 so
j2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j2

1

q
� 1� j2

1=2þ j4
1=8� � � � ð117Þ
Since j1 � Vp=c, the importance of the third term depends on its relative magnitude. Typically j1 6 0:5, so
the third term is likely to be no more than 5% of the second and completely negligible relative to the first.
Thus replacement of j2 in terms of j1 in the above expression for uc requires keeping terms according to

their contribution yielding
uc � �ðrc � rpÞðj2
1=2þ j4

1=8Þ � rcð1� j2
1=2Þec lnðrp=rcÞ ð118Þ
We can no longer ignore the term with the logarithmic factor, and the like term in j1 also plays a role.

Substituting for j1 using Eq. (112) expanding and keeping the most dominant terms, and recalling that the

cone edge strain and wave speed ratio are related by ec � a2 gives
uc � �ðrc � rpÞ
1

2

Vp
c

� �2
(

þ 1

8

Vp
c

� �4

þ 1

 
þ 1

2

Vp
c

� �2
!
a2

lnð1� ðrc � rpÞ=rcÞ
ðrc � rpÞ=rc

)
ð119Þ
and for moderate rc � rp we can expand the logarithm in Eq. (119) to achieve
uc � �ðrc � rpÞfð1=2ÞðVp=cÞ2 þ ð1=8ÞðVp=cÞ4 � a2ð1þ ð1=2ÞðVp=cÞ2Þð1þ ð1=2Þ½ðrc � rpÞ=rc�

þ ð1=3Þ½ðrc � rpÞ=rc�2 þ � � �Þg ð120Þ
In 1D a similar procedure is followed, starting with Eqs. (104)–(106), yielding
uc ¼ �ðrc � rpÞ 1

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ a2Þ2 � ðVp=cÞ2

q �
ð121Þ
but here a is constant in time.

3.6. Matching cone and implosion wave displacements and determining the wave speed ratio

We must now match the displacement at the cone boundary with that from the appropriate region of the

in-plane implosion solution. At t ¼ 0, the wave fronts of the implosion and the cone waves must coincide at

the projectile radius, rp. This requirement was anticipated using the respective time shifts �ttp ¼ rp=a0 and

tp ¼ rp=c whereby the times for the tension and cone waves are t þ�ttp and t þ tp, respectively. From the
implosion analysis, Eq. (45) is written as
uc � ~uuðfcÞ ¼ sl ln fc ð122Þ
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where fc ¼ rc=s and s ¼ a0ðt þ�ttpÞ. Since ec ¼ l=fc and a2 ¼ ec we can rewrite this as
uc � a2rc lnfrc=ða0ðt þ�ttpÞÞg ð123Þ
Since a0 ¼ c=a, t ¼ rc=c� tp and tp ¼ rp=c, this can be reduced to
uc � �a2rc lnf1þ ð1� aÞðrc � rpÞ=ðarcÞg ¼ a2rcfln a� lnð1� ð1� aÞrp=rcÞg ð124Þ
Note that when rc � rp � 2arp, that is, the cone has grown only a very small fraction of the projectile

diameter, we expand the logarithm in the first expression in Eq. (124) to yield
uc � �að1� aÞðrc � rpÞf1� ð1� aÞðrc � rpÞ=ð2arcÞ � � � �g ð125Þ
For larger rc > rp the last expression in Eq. (124) expands to
uc � a2rcfln aþ ð1� aÞrp=rc þ ð1=2Þðð1� aÞrp=rcÞ2 þ ð1=3Þðð1� aÞrp=rcÞ3 þ � � �g ð126Þ
which has about 10% error for rc ¼ 1:5rp that drops rapidly as rc increases further.
To see how the deformation cone evolves, we first consider early cone growth over 0 < rc � rp < arp=2,

and let a0 ¼ c0=a0 be the initial velocity ratio, where c0 is the initial cone wave speed just after impact.

Comparing the two expressions for uc, Eqs. (119) and (125), canceling rc � rp from both sides and taking the
limit as rc � rp ! 0þ (i.e., t ! 0þ) we obtain
a0ð1� a0Þ � ð1=2ÞðVp=ða0a0ÞÞ2 þ ð1=8ÞðVp=ða0a0ÞÞ4 � a20 � ða20=2ÞðVp=ða0a0ÞÞ
2 ð127Þ
Neglecting the smallest term and canceling a20 from both sides yields
ð1=4ÞðVp=a0Þ4 þ a20ðVp=a0Þ
2 � 2a50 � 0 ð128Þ
This may be factored and the relevant root yields
Vp=a0 �
ffiffiffi
2

p
a3=20 ð1� a0=4Þ �

ffiffiffi
2

p
e3=40 ð1� ffiffiffiffi

e0
p

=4Þ ð129Þ
where e0 is the initial membrane strain at the location of projectile edge on contact, i.e. when rc ¼ rp and

t ¼ 0þ, so that, e0 � a20, as mentioned in connection with Eq. (92). Inversion in Eq. (129) yields an ap-

proximation for a0 in terms of Vp, which is
a0 � ðVp=ð
ffiffiffi
2

p
a0ÞÞ2=3f1þ ð1=6ÞðVp=ð

ffiffiffi
2

p
a0ÞÞ2=3g � ðVp=ð

ffiffiffi
2

p
a0ÞÞ2=3 ð130Þ
The initial cone edge wave speed relative to material coordinates is c0 ¼ a0a0. The second factor in curly

brackets is typically negligible (<3%), so in later calculations we neglect it.

In the 1D case, a similar analysis to that above leads to a similar result to Eq. (129), i.e.,
Vp=a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0ð1þ e0Þ

p
� e20

q
�

ffiffiffi
2

p
e3=40 ð1� ffiffiffiffi

e0
p

=4Þ ð131Þ
except that the strain remains constant as et ¼ ec ¼ ep ¼ e0. The wave speed ratio is
a0 ¼ c0=a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0=ð1þ e0Þ

p
ð132Þ
that is, the cone wave speed c remains constant at c0. Eq. (131) yields the simple approximation
e0 � ðVp=ð
ffiffiffi
2

p
a0ÞÞ4=3 ð133Þ
the ‘‘classified’’ result mentioned by Ringleb (1957), but originally due to Rakhmatulin (1945).

In a 2D membrane, since the speed of the tension wave front is 1=a times the wave speed of the cone edge

(i.e., larger by an order of magnitude), this 1D-like result corresponds approximately to the tension wave
front being at s ¼ 3rp=2, which means that the tension wave has traveled less than the projectile radius, rp.
Beyond this point, if the strain ec were then to remain fixed at the 1D value, e0, the flow of membrane
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material into the cone edge would have to slow down, since the strain at the tension wave front decreases

with expanding circumference. This implies that ec must initially increase as the cone radius grows in order

to maintain the inward flow of material, and the wave speed ratio amust also increase. We find that most of

this increase occurs very quickly after impact, when the cone has grown only a small fraction of rp. Thus the
constant cone wave speed assumption needed for self-similarity is only violated significantly in this small

transition region where details of impact are obscured in the first place.

To determine a as the cone grows, we keep the most dominant terms in the cone edge displacement

relationships, Eqs. (119) and (125), and dividing both by rp, we obtain
Fig. 3.

projec
�a2 ln
1

a

� ��
þ ln 1

�
� ð1� aÞrp

rc

��
rc
rp

� � 1

2

Vp
aa0

� �2 rc � rp
rp

þ a2
rc
rp

ln
rc
rp

� �
ð134Þ
This can be rearranged to give
Vp=a0 � a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=ð1� rp=rcÞÞ lnf1þ ð1=aÞðrc=rp � 1Þg

q
ð135Þ
or
Vp=ð
ffiffiffi
2

p
a0Þ � a3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrc=rpÞ lnf1þ ð1=aÞðrc=rp � 1Þg=fð1=aÞðrc=rp � 1Þg

q
ð136Þ
If desired, we can solve for a iteratively starting with the initial 1D value a0 � fVp=ð
ffiffiffi
2

p
a0Þg2=3. A first

approximation for a is thus
a1 ¼
Vp

a0
ffiffiffi
2

p
� �2=3 rp

rc

� �1=3
1

a0

rc
rp

��
� 1

��1=3
,

ln 1

��
þ 1

a0

rc
rp

�
� 1

���1=3

ð137Þ
which gives results a few percent too high, but the second approximation is quite accurate, i.e.,
a � a2 ¼
Vp

a0
ffiffiffi
2

p
� �2=3 rp

rc

� �1=3
1

a1

rc
rp

�(
� 1

�)1=3,
ln 1

��
þ 1

a1

rc
rp

�
� 1

���1=3

ð138Þ
Fig. 3 plots the normalized wave speed c=c0 ¼ a=a0, versus the normalized cone radius w ¼ rc=rp for

various values of the initial 1D strain e0 � fVp=ð
ffiffiffi
2

p
a0Þg4=3, as calculated by iteration in Eq. (136). In all
Sharp initial transition followed by near constancy of cone edge wave speed, c=c0 ¼ a=a0, versus ratio of cone base radius to

tile radius, w ¼ rc=rp, at several initial membrane strains, e0, resulting from various constant projectile velocities, Vp.
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cases the cone edge wave speed jumps rapidly over the range rp < rc < 1:5rp (where the cone grows less than
50% of the projectile radius). The rise is almost complete at rc ¼ 2rp (i.e., growth by one projectile radius)

and shortly thereafter it decreases extremely slowly, a result of the logarithmic factor in the denominator.

Thus, after a brief transition region, c is virtually constant and the self-similar solution is justified up to the
material strain limit. One feature to appreciate, however, is that eventually the logarithmic factor will re-

duce the cone-edge wave speed to zero as well as the membrane strain. Attempting to shrink the projectile

to a point eliminates the length scale of the projectile tip and leads to a situation of no cone growth and

infinite membrane strain at the projectile tip, as seen next. In the 1D model, however, the impact triangle or

cone wave speed and strain are unaffected. These anomalies are at the heart of various difficulties discussed

in Rakhmatulin and Dem�yanov (1961).

3.7. Strain distribution in the membrane and ground versus material coordinate perspectives

The tangential strain distribution in the membrane is easily found for both the curved cone region and

the outer implosion wave region. From Eqs. (46) and (80) and strain continuity at the cone wave front, the

strain throughout the fabric in material coordinates is simply
et � ecrc=r ¼ a2rc=r; rp 6 r6 a0t þ rp ð139Þ
The largest and crucial strain value is ep, the membrane strain at the projectile edge, which is
ep � ecrc=rp ¼ a2rc=rp ð140Þ

Note that the cone edge wave speed relative to ground is less than c since the edge is traveling in fabric

material �flowing� towards the projectile region of impact. This material added to the cone allows the cone

to have a much larger angle without failure than it would have otherwise. The flow velocity is given by
_uuc=a0 � o~uuðfcÞ=os ¼ ecfcðln fc � 1Þ ¼ a2fcðln fc � 1Þ ð141Þ

and is negative. The velocity of the cone edge relative to ground is approximately ~cc � cþ _uuc and substi-

tuting for fc ¼ rc=s and manipulating the result we obtain
~cc � a0faþ a2½1þ ð1� aÞðrc � rpÞ=ðarcÞ�½ln a� lnð1� ð1� aÞrp=rcÞ � 1�g ð142Þ
Typically ~cc is smaller than c by 10–20%. Fig. 2, illustrates this effect.

A consequence of the cone edge wave speed change in perspective is that the inverse smoothness of the

strain et in r occurs in material coordinates but is distorted in ground coordinates since the cone edge is

actually significantly closer to the projectile. This sharpens the growth in strain approaching the projectile

as well as increasing the local slope, a feature that can be seen in plots from simulations of biaxial fabric

impact in Cunniff (1992).
In the 1D case, Eq. (55) indicates that the tape material behind the tensile wave flows towards the impact

point with constant velocity _uu1 ¼ �e0a0. The velocity of the triangle wave front relative to ground, denoted
~cc, is given as the material coordinates value c ¼ a0a0 times the �stretch factor� 1þ e0 ¼ 1þ a20 (ignored in

2D) minus the flow velocity _uu1, i.e.,
~cc ¼ a0a0ð1þ e0Þ � _uu1 ¼ a0a0ð1� a0 þ a20Þ ð143Þ
to compare to ~cc � a0a0ð1� a0Þ in Eq. (142) for 2D, agreeing closely upon impact (rc � rp).
In the 1D case, the analysis that led to Eqs. (121) and (131) also shows that the cone or triangle deflection

angle c (relative to ground) is fixed and follows
sin c ¼ Vp=fð1þ e0Þa0a0g ¼ Vp a0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0ð1þ e0Þ

p	 
.
ð144Þ



6748 S. Leigh Phoenix, P.K. Porwal / International Journal of Solids and Structures 40 (2003) 6723–6765
From this and Eq. (133) we get the useful approximations
c � ð2Vp=a0Þ1=3 ð145Þ
and
c � ð4e0Þ1=4 ð146Þ

Both turn out to be surprisingly accurate for strains of interest in the paper.

As mentioned, the cone angle c is fairly large due to the flow of material into the cone edge rather than
due to the membrane strain. The 1D case is useful for illustrating that most of this angle comes from flow of

material towards the impact zone. When the cone wave front has traveled from rp to rc in material co-

ordinates, the unstretched length of material in the diagonal from the projectile edge to the wave front is

rc � rp. The length change De due to strain is
De ¼ e0ðrc � rpÞ ¼ e0a0a0t ð147Þ
On the other hand, the amount of material Du that has been fed into triangle edge relative to ground can be
shown to be the displacement
Du ¼ u1ðrcÞ ¼ e0ðð1� a0Þ=a0Þðrc � rpÞ ¼ e0ð1� a0Þa0t ð148Þ
The ratio of the length change from strain to the total from both strain and flow is
De=ðDu þ DeÞ ¼ a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0=ð1þ e0Þ

p
ð149Þ
Typically emax < 0:04, so this ratio is at most 0.2 indicating only 20% of the length change to generate the

large deflection angle, c, comes from strain in the material; the other 80% is flow.

3.8. Behavioral features near threshold velocity for instantaneous perforation (no cone growth)

Note that the membrane stress grows substantially during the transition, so under steady projectile

velocity conditions, a stress concentration will develop relative to constant stresses seen in 1D impact. From

the perspective of impact velocity, the maximum possible to avoid instant perforation is given by the 1D

solution as
Vp;max � a0
ffiffiffi
2

p
a3=20max ð150Þ
where a0max �
ffiffiffiffi
e0

p ¼ ffiffiffiffiffiffiffiffi
emax

p
is the maximum initial wave speed the membrane can tolerate without instant

failure. However, for the cone edge to grow to just rc � 1:5rp without perforation and noting that

ep ¼ a2ðrc=rpÞ at the projectile edge, the velocity Vp;max must be lowered about 25%. This suggests that under

deceleration from membrane reaction forces, the deceleration must be very high to avoid the stress con-

centration. This issue is taken up in more detail later.

In the above analysis, we have used several approximations: First, we have assumed no slip of the

membrane in the region of contact with the projectile. However, slip may lower the strain development in
the transition region as the tension wave travels both outward and inward from the projectile edge. Thus we

would expect the strain buildup in this transition regime to be slightly delayed but complete, nevertheless,

by the time the transition has passed.

Other perturbations are likely to result from the rapid increase in cone wave speed in the transition

(relative to the assumed self-similar solution), but beyond this transition time we expect the fabric strain

and wave shapes to quickly stabilize, especially in the important cone region. This will likely occur well

before the cone wave front radius has become double the projectile radius. By this time the tension wave

front radius will be an order of magnitude larger than both rp and rc. Another assumption was to use ~uu of
Eq. (45) to represent the true displacement u. This may affect the strain and displacement nearer to the
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tension wave front (where the b ¼ 1=2 solution has by then largely decayed) but is unimportant back at the

cone wave front where the cone and tension wave solutions were matched. In essence potential side effects

of these approximations are serendipitously suppressed by the very fact that the strain starts at the 1D value

but then rises sharply without overshoot. The exact details of the rise appear to matter little.
4. Deceleration of projectile and membrane strain evolution

We have assumed the projectile has finite mass Mp and initial contact with the membrane occurs within a

circular a region of radius rp ¼ Dp=2, which has mass mp ¼ qhpr2p. Due to reaction forces from the

membrane, the projectile velocity decreases in two stages. First is a virtually discontinuous drop from Vp
just prior to impact to Vp0 just after impact. The value of Vp0 is determined later using conservation of
momentum. From Vp0, projectile deceleration then occurs continuously over time t > 0. To avoid perfo-

ration, the projectile velocity must decrease fast enough to compensate for the tendency of the membrane

strain ep to increase with cone base radius rc, and furthermore, ep must be kept below emax, the membrane

failure strain.

Though an exact analysis for varying projectile velocity is intractable, we can develop useful approxi-

mations using a simple adaptation of the present results to decreasing velocity. In 1D we will comment later

on the validity of this approach and show that it gives accurate results. Calculating the deceleration of the

projectile requires knowing the resisting force exerted by the membrane opposing projectile motion. This
requires knowing the cone angle cp at the circle of contact with the projectile in ground coordinates. The

angle c was initially defined relative to ground, so we need cp ¼ cðnpÞ.
As the projectile slows, the above analysis for constant projectile velocity may not give quite the correct

cone geometry. We should note, however, certain beneficial factors such as the cone edge wave speed and

projectile velocity being related roughly through c / V 2=3 after the initial transition. This means that local

cone angles will change fairly slowly in V , roughly as c / V 1=3, as we see in 1D. Thus the cone will tend to

keep the constant velocity shape.

4.1. Local cone angle and reactive force on the projectile

From Eqs. (63) and (66) the local cone angle at the edge of the projectile is
sin cp ¼ �Y 0ðnpÞ=RðnpÞ ð151Þ
where from Eq. (79)
RðnÞ ¼ 1þ etðnÞ ¼ 1þ ec=nþ ð1=2Þðe2c=n
2Þðn� n3Þ þ � � � ð152Þ
and from Eq. (93)
Y 0ðnÞ � �j1 e
ec=n ¼ �j1f1þ ec=nþ ð1=2Þðe2c=n

2Þ þ � � �g ð153Þ

which is especially valid for np 6 n < 0:8. Taking n ¼ np and examining the ratio of the two, one sees to high
accuracy that sin cp � �j1 where the relative error is of order e2c=ð2n

2
pÞ so is typically much less than 1%. By

Eq. (112) for j1, we have
sin cp � �j1 � fV =ðaa0Þgf1� ec½rc=ðrc � rpÞ� lnðrc=rpÞg ð154Þ
We adapt Eq. (154) to decreasing velocity using instantaneous values for c ¼ aa0.
The reactive force exerted by the membrane on the projectile is
F ¼ �2prpEhetðnpÞ sin c ¼ �2prpEhecðrc=rpÞ sin c ¼ �2prpEha2ðrc=rpÞ sin c ð155Þ
p p p
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where E and h are membrane modulus and thickness, respectively. Using Eq. (154) yields
F � �2prpEhaðV =a0Þðrc=rpÞf1� a2½rc=ðrc � rpÞ� lnðrc=rpÞg ð156Þ
The second term in curly brackets is small, being less than ep ¼ ec=np, the strain adjacent to the projectile,

which is less than 0.05. Keeping only the dominant term in Eq. (156) and noting that
a ¼ ð1=a0Þdrc=dt ð157Þ
where a20 ¼ E=q we obtain the important result
F � �ð2pr2pEh=a0ÞðV =a0Þðrc=rpÞdðrc=rpÞ=dt ¼ �pr2pqhV dðrc=rpÞ2=dt ð158Þ
On the other hand, in 1D the reactive force is simply
F ¼ 2prphEe sin c � 2prphEec � ðprphE=2Þð2V =a0Þ5=3 ð159Þ
using Eqs. (133), (145) and (146), and where the strain e now changes with time. We also have
c � fð2F Þ=ðprpEÞg1=5 � ð4eÞ1=4 � ð2V =a0Þ1=3 ð160Þ
which underscores that the angle c is very insensitive to the force exerted on the projectile, the material

strain, and even to the projectile velocity. Typically the longitudinal wave speed greatly exceeds both the

speed of the growing triangle and the projectile velocity, i.e., a0 � c > V . Thus, as the projectile velocity

decreases, the configuration and distribution of material strain rapidly adjust, especially the crucial flow of
material into the cone, _uu1 ¼ �a0e. This justifies making the simple and direct adaptation of our constant

velocity results to decreasing velocity.

Rakhmatulin and Dem�yanov (1961) discuss this issue but mainly in the case of non-linear stress–strain

behavior following Ryabova (1953). Their main results are complicated expressions for differential changes

in the position of the cone wave front, and tape stresses and strains there as well as at the projectile. At the

end, they discuss the simplifications arising from assuming elastic behavior, but the results remain com-

plicated. However, once we invoke the condition a0 � c > V , the complicating terms all vanish, leading us

to our starting point.

4.2. Areal density ratio, momentum exchange and velocity evolution during and after impact

We recall that mp ¼ qhAp ¼ qhpr2p is the membrane mass in contact with the projectile. The total mass

the membrane reactive force must decelerate is thus
M0 ¼ Mp þ mp ð161Þ
We let C0 be the areal density ratio of the membrane to the projectile, which is
C0 ¼ mp=Mp ¼ qhAp=Mp ¼ qhpr2p=Mp ð162Þ
We assume the projectile velocity, Vp, before impact and velocity, Vp0, immediately after impact are related

by simple momentum exchange (see for example Fatt et al. (2003) for blunt impact into fiber–metal lam-

inates). Thus
Vp0 ¼ Vp=ð1þ C0Þ ð163Þ
Since F ¼ �M0 dV =dt, Eq. (158) yields
M0 dV =dt ¼ �pr2pqhV dðrc=rpÞ2=dt ð164Þ
or
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dV =V ¼ �½C0=ð1þ C0Þ�dðrc=rpÞ2 ð165Þ
Letting w ¼ rc=rp and noting that rc ¼ rp and V ¼ Vp0 just after impact, Eq. (165) integrates to the im-
portant result
V =Vp ¼ V =fVp0ð1þ C0Þg ¼ f1=ð1þ C0Þg expf�½C0=ð1þ C0Þ�ðw2 � 1Þg ð166Þ
In the 1D case, letting Fp0 be the initial (right after momentum exchange at impact) projectile deceler-
ation force, Eq. (159) relating deceleration force and velocity can be written as
F =Fp0 ¼ ðV =Vp0Þ5=3 ð167Þ
where
Fp0 � ðprphE=2Þð2Vp0=a0Þ5=3 ð168Þ
This deceleration force acts on M0, the projectile mass plus the mass of the membrane material it has just

contacted. Thus
M0 dV =dt ¼ �F ð169Þ

and using V ¼ dd=dt where d is distance traveled by the projectile after impact and using Eq. (167) we write

this as
M0V 2
p0ðV =Vp0Þ

�2=3
dðV =Vp0Þ ¼ �Fp0 dd ð170Þ
Upon integration we obtain
ðV =Vp0Þ1=3 ¼ 1� ðFp0dÞ=ð3M0V 2
p0Þ ð171Þ
Letting dp0 be the distance for the projectile to stop (V ¼ 0), Eqs. (168) and (171) yield
dp0 ¼ ½3M0=ð2prphqÞ�ð2Vp0=a0Þ1=3 ð172Þ
Also, letting
ep0 ¼ a2p0 � fVp0=ð
ffiffiffi
2

p
a0Þg4=3 ¼ fVp=½

ffiffiffi
2

p
a0ð1þ C0Þ�g4=3 ð173Þ
(actually an approximation) and recalling Eqs. (159), (160), (169), (170) and (171) we find
ðF =Fp0Þ1=5 � ðe=ep0Þ1=4 � ðV =Vp0Þ1=3 � 1� d=dp0 � 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t=tp0

q.
ð174Þ
where
tp0 � dp0=ð2Vp0Þ ¼ f3M0=ð2prphqa0Þgfa0=ð2Vp0Þg2=3 ð175Þ
is a characteristic time of deceleration, being half the time it would take the unrestrained projectile to travel
distance dp0.

In 1D, we note for small times that F =Fp0 � 1� ð5=2Þt=tp0 so although decreasing rapidly even after

momentum exchange occurs, the force drops linearly at small times. Also Eq. (174) shows that while the

projectile stops in a finite distance, dp0, the time it takes to stop completely is theoretically infinite (though in

practice it is truncated by boundary effects).

4.3. 2D membrane strain evolution and maximum strain concentration adjacent to the projectile

In the membrane next to the projectile just after impact at t ¼ 0þ, we have ep0 ¼ a2p0 �
fVp=½

ffiffiffi
2

p
a0ð1þ C0Þ�g4=3, and thus, Eq. (135), becomes
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V =Vp0 � ða=ap0Þ3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w lnf1þ ð1=aÞðw� 1Þg=fð1=aÞðw� 1Þg

p
ð176Þ
where w ¼ rc=rp. Since
a=ap0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=wÞðep=ep0Þ

q
ð177Þ
we can use Eq. (166) to rearrange the above expression to yield
ep=ep0 � expf�½4C0=ð3ð1þ C0ÞÞ�ðw2 � 1Þgw1=3½ð1=aÞðw� 1Þ= lnf1þ ð1=aÞðw� 1Þg�2=3 ð178Þ
Given Vp0 ¼ Vp=ð1þ C0Þ, this expression allows us to calculate the evolution of the strain enhancement

ratio, ep=ep0, versus the cone growth ratio, w ¼ rc=rp (though to use it one must calculate a for each V and w
combination using the above expression for V =Vp0).

Due to the decaying exponential, the strain peaks and we would like to determine the threshold velocity

for perforation, i.e., the maximum velocity Vp0 ¼ Vp=ð1þ C0Þ that still keeps the membrane strain below the

failure threshold. Thus we let K ¼ ep=ep0 be the strain amplification factor in the membrane at the projectile

edge in the time period after impact. Additionally we recall a ¼ ffiffiffiffi
ec

p ¼
ffiffiffiffiffiffiffiffiffiffi
ep=w

p
. Thus Eq. (178) becomes
K ¼ ep
ep0

� exp

�
� 4C0

3ð1þ C0Þ
½w2 � 1�

�
w1=3

ffiffiffiffiffiffiffiffiffiffi
w=ep

p
ðw� 1Þ

lnf1þ
ffiffiffiffiffiffiffiffiffiffi
w=ep

p
ðw� 1Þg

" #2=3
ð179Þ
where ep ¼ wa2ðV ;wÞ and V ¼ V ðVp0;C0Þ can be obtained from Eqs. (166), (176)–(178).

In 1D we can use Eq. (174) to show that
K ¼ ep
ep0

� exp

�
� 4C0

3ð1þ C0Þ
½w2 � 1�

�
ð180Þ
Thus the maximum value in 1D is automatically Kmax ¼ 1, which occurs just after impact.

Returning to 2D, the maximum value, Kmax, requires the strain constraint ep 6 emax as w grows. The decay

rate of the exponential overwhelmingly dominates the peak behavior, so the value wmax, where the maxi-

mum in w occurs, is easy to approximate when wmax � 1, but the result works even for wmax near 1. The

logarithmic term is slowly varying, and we can replace w� 1 by w in seeking an approximate maximum.

Also K reaching Kmax implies that ep reaches emax and is stationary on the right-hand side (zero derivative in
w). Raising both sides of Eq. (179) to the power 3/4 and taking derivatives with respect to w2 with ep ¼ emax

yields
wmax �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ C0Þ=ð2C0Þ

p
ð181Þ
and thus
Kmax � exp

�
� 4C0

3ð1þ C0Þ
ðw2

max � 1Þ
�
w1=3

max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wmax=emax

p
ðwmax � 1Þ

lnf1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wmax=emax

p
ðwmax � 1Þg

" #2=3
ð182Þ
Note that Kmax ¼ 1 for C0 P 1 so there is no strain concentration, and wmax ¼ rc=rp ¼ 1, as it should.

Note that wmax and Kmax both increase as C0 decreases and the strain concentration plays an increasing role.

However, the cone base size required to lower the Vp0 velocity to Vfinal ¼ 0:02Vp0 (i.e. 2% residual velocity) is

easy to determine. From Eq. (166) we have
wfinal ¼ rc;final=rp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lnð50Þð1þ C0Þ=C0

p
ð183Þ
For example for C0 ¼ 0:125, we find wfinal ¼ rc;final=rp � 6:02, almost three times the growth to achieve

maximum strain. This result is fairly insensitive Vfinal.
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4.4. Distance required to stop the projectile for the 2D membrane

In Fig. 3 we saw that, under constant projectile velocity, the cone edge velocity c ¼ aa0 is almost con-

stant after a very brief transition period of growth in w ¼ rc=rp where it jumps a few percent above the
starting 1D value. Based on Eq. (129) we have the approximation
c ¼ rp dw=dt � 1:23a0fV =ða0
ffiffiffi
2

p
Þg2=3 ð184Þ
This allows us to calculate the membrane deflection, d, versus w and also dp0, the deflection when the

projectile stops. We can then use Eq. (166) to obtain d versus w ¼ rc=rp and we obtain
dðwÞ ¼
Z w

1

V
dw=dt

dw ¼
Z w

1

rpV 1:23a0 V a0
ffiffiffi
2

p	 
.n o2=3
� ��� �

dw

¼ 1

1:23

� �
ð2Vp0=a0Þ1=3rp e

C0
3ð1þC0Þ

Z w

1

e
� C0

3ð1þC0Þ

	 

w2

dw ð185Þ
Note that
Z w

1

e
� C0

3ð1þC0Þ

	 

w2

dw ¼
ffiffiffi
p

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ C0Þ

C0

s
erf w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C0

3ð1þ C0Þ

s !(
� erf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C0

3ð1þ C0Þ

s !)
ð186Þ
We see that d ! dp0 as w ! 1 and Eq. (186) becomes
Z 1

1

e
� C0

3ð1þC0Þ

	 

w2

dw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3pð1þ C0Þ=ð4C0Þ

p
1
n

� erf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C0=½3ð1þ C0Þ�

p	 
o
ð187Þ
Thus
dp0
rp

� 1

1:23

2Vp0
a0

� �1=3

e
C0

3ð1þC0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3pð1þ C0Þ

4C0

s
1

(
� erf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C0

3ð1þ C0Þ

s !)
ð188Þ
Recalling Vp0 ¼ Vp=ð1þ C0Þ and expanding the exponential and error function we finally have
dp0
rp

� 1:25
ð1þ 4C0=3Þ
ð1þ C0Þ5=6

( )
1ffiffiffiffiffi
C0

p
� �

1

(
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C0

3ð1þ C0Þ

s )
2Vp
a0

� �1=3

ð189Þ
In 1D we obtained Eq. (172) and using Eqs. (161)–(163) this becomes.
dp0
rp

� 3

2

ð1þ C0Þ2=3

C0

( )
2Vp
a0

� �1=3

ð190Þ
to compare to Eq. (189) for the 2D membrane. Note that at small C0 the two results diverge with the 1D

result growing relative to the 2D membrane result as
ffiffiffiffiffi
C0

p
.

4.5. Energy absorbed in stopping projectile and V50 limit

Next we consider the energy absorbed by the membrane in stopping the projectile from velocity Vp0. At

this point, the kinetic energy of the projectile plus membrane patch it contacts is
~EEp0 ¼ M0V 2
p0=2 ð191Þ
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and this equals the work done by the membrane. The 1D case is easy and by Eq. (174) we have
Z dp0

0

F ðdÞdd ¼ Fp0

Z dp0

0

ð1� d=dp0Þ5 dd ¼ Fp0dp0=6 ð192Þ
so that
~EEp0 ¼ Fp0dp0=6 ð193Þ
From Eqs. (168) and (173) we have
Fp0 � 23=2prphEe
5=4
p0 ¼ 23=2prphr

5=4
p0 =E

1=4 ð194Þ
where rp0 ¼ Eep0 after momentum exchange at impact. Combining Eqs. (162) and (172) yields
dp0 ¼ 3rpfð1þ C0Þ=C0gð2Vp0=a0Þ1=3 ¼ 3rpfð1þ C0Þ=C0gð4ep0Þ1=4 ð195Þ
Thus from Eqs. (191) and (193)–(195) we arrive at
M0V 2
p0=2 ¼ ðM0=qÞrp0e

1=2
p0 ¼ M0a20e

3=2
p0 ð196Þ
We can also rewrite this projectile energy equation in terms of C0, and using Eq. (162) we get
M0V 2
p0=2 ¼ fð1þ C0Þ=C0gAphrp0e

1=2
p0 ¼ fð1þ C0Þ=C0gAphqa20e

3=2
p0 ð197Þ
By convention V50 is the threshold projectile velocity Vp above which the membrane fails by perforation

50% of the time. Using Eq. (163) in Eq. (197), taking Vp as V50 and replacing rp0 and ep0 by the limiting
values rmax and emax, respectively, results in
MpV 2
50=2 ¼ fð1þ C0Þ2=C0gAphrmaxe

1=2
max ¼ ð1þ C0Þ2Mpa20e

3=2
max ð198Þ
and
V50 ¼ ð1þ C0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2AphrmaxÞ=ðMpC0Þ

q
e1=4max ¼

ffiffiffi
2

p
ð1þ C0Þa0e3=4max ð199Þ
Note that the last equation follows directly from Eq. (173). Also, Eq. (198) should not be interpreted as an
energy balance equation per se, but as a relationship between maximum projectile energy without failure,

and various projectile and tape properties. Clearly the V50 velocity is influenced by the size of the contact

zone through the C0.

In 2D, the energy calculation is somewhat more complicated to obtain directly, but Eq. (173) together

with acknowledgement of the strain concentration Kmax of Eq. (182) results in
V50 ¼
ffiffiffi
2

p
ð1þ C0Þa0ðemax=KmaxÞ3=4 ð200Þ
where we see that Kmax ¼ KmaxðC0; emaxÞ through Eqs. (181) and (182). We will convert this equation into

convenient dimensionless form to compare with published experimental results.

4.6. Residual velocity in case of perforation (Vp > V50)

To avoid perforation, the strain ep at the projectile radius must be kept below emax, which implies a

limiting value for Vp, known as V50 in the literature. For Vp > V50, perforation will occur but the projectile

velocity, Vres, will be less than Vp. Due to momentum exchange (assuming a plug of membrane of area

roughly Ap is cut out and travels with the projectile) one might expect Vres � Vp0 ¼ Vp=ð1þ C0Þ as the 1D
model clearly predicts. However, perforation is not instantaneous as some cone growth may occur, de-

pending on C0, and Vp, and membrane reactive forces decelerate the projectile below that due to momentum
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transfer alone. Assuming Vp > V50 we let wfail be the value of w when the strain limit is first exceeded, and

note that
1 < wfail 6wmax �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ C0Þ=ð2C0Þ

p
ð201Þ
We can combine Vp0 ¼ Vp=ð1þ C0Þ with Eq. (166) and write
Vres=Vp ¼ f1=ð1þ C0Þg expf�ðw2
fail � 1ÞC0=ð1þ C0Þg ð202Þ
Note that for Vp ¼ V þ
50 , i.e., just above the perforation threshold, Eqs. (166) and (201) yield
Vres=V þ
50 ¼ f1=ð1þ C0Þg expfC0=ð1þ C0Þ � 1=2g ð203Þ
(For C0 > 1 the exponential becomes 1.) The exponential has an appreciable effect for small C0. Also as Vp
increases above V50, wfail decreases below wmax, and Vres ! Vp=ð1þ C0Þ by Eq. (202). This is seen as cur-

vature in plots of Vres versus Vp P V þ
50 . Later we will generate plots of Eq. (202) based on numerically solving

for wfail. The equation to solve is based on Eq. (179), with ep0 ¼ a2p0 given by Eq. (173) and setting ep ¼ emax.

The equation is then
2
a0
Vp

� �2

� wmax

2C0emax

� �2

w2
max exp

(
� 1

w2
max

½w2
fail � 1�

)
wfailðwfail � 1Þ

ln 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wfail=emax

p
ðwfail � 1Þ

n o ð204Þ
5. Application to impact response of balanced fabric

We apply the model to the impact response of a balanced fabric (e.g., a plain weave) or several layers

thereof with the same yarn orientation. Details such as crimp angle, yarn denier and number of yarns per

unit width or length are ignored as is the directional behavior or orthotropy in mechanical properties with

respect to the yarn axes. Our hypothesis is that the dimensionality 2D is the primary factor in fabric response

and that no adaptation of the 1D model as, say, four material spokes representing the yarn directions will

work despite the fact that the tension waves will travel with great preference along the yarn axes.
We also define an effective diameter of impact Dph ¼ hDp, and area Aph ¼ h2Ap, where h is a parameter

typically somewhat greater than unity. The idea is that due to such factors as fabric wraparound effects,

projectile nose plastic deformation and perhaps tearing roughness caused by the square nature of the fabric,

and causing an expanded plug of fabric in the initial momentum exchange in thick systems, the effective

fabric mass in contact with the projectile is
mph ¼ h2mp ¼ qfhfAph ð205Þ

where we add the subscript ‘‘f’’ to refer to fabric effective properties (i.e., hf is the effective thickness of

fabric or fiber material with the voids ignored or removed and qf is the fabric and fiber density). We also

define a revised areal density ratio as
C0h ¼ mph=Mp ¼ h2ðmp=MpÞ ¼ h2C0 ð206Þ
where C0 ¼ mp0=Mp remains as the nominal value used to in reporting standardized experiments.
We distinguish yarn (or fiber) properties with the subscript ‘‘y’’ in addition to fabric (membrane)

properties with the subscript ‘‘f’’. The effective modulus of the fabric is Ef ¼ Ey=2 (since crossing yarns add

cross-sectional area but not load carrying), but the fabric and yarn densities are the same, i.e., qf ¼ qy. The

failure strains are also equal, ef max ¼ eymax, but the fabric failure stress is halved, i.e., rf max ¼ rymax=2
compared to a yarn (fiber). The longitudinal wave speed for the fabric (along principal yarn directions) is
a0f ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Ef=qf

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEy=2Þ=qy

q
¼ a0y=

ffiffiffi
2

p
ð207Þ
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being smaller than a0y for a yarn because of the added mass of crossing yarns. Henceforth a0f will refer to
membrane or fabric tensile wave speed since both are modeled as a continuum.

5.1. V50 velocity in terms of Cunniff ’s dimensionless scaling parameters

We recall Eq. (200), and in view of the notational discussion above rewrite it as
V50 ¼ ð1þ h2C0Þa0y½eymax=Kmaxðh2C; eymaxÞ�3=4 ð208Þ

To reduce ballistic data for various fabrics to fit one curve Cunniff (1999c), defined two dimensionless
variables, C0 and P as follows: C0 is given by Eq. (206) and P is given by
P ¼ V50=
ffiffiffiffi
X3

p
ð209Þ
where
ffiffiffiffi
X3

p
is a normalizing velocity and X is expressed in yarn (fiber) properties and is
X ¼ ð1=2Þðrymaxeymax=qyÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
Ey=qy

q
¼ ð1=2Þe2ymaxa

3
0y ð210Þ
Note that X is the product of the elastic energy storage capability of the fiber per unit mass times the fibers

tensile wave speed. Cunniff has argued for a relationship of the form
P ¼ f ðC0Þ ð211Þ

where f was said to be an increasing function of C0 only, and was graphed empirically from data. Com-

paring Cunniff�s empirical relationship with Eq. (208) in view of Eqs. (209) and (210) requires that f ðC0Þ
actually be
f ðh2C0; eymaxÞ � 21=3e1=12ymaxð1þ h2C0Þ=½Kmaxðh2C0; eymaxÞ�3=4 ð212Þ
with Kmaxðh2C0; eymaxÞ as in Eq. (182) with C0 in Eqs. (181) and (182) replaced by C0h ¼ h2C0 and emax re-

placed by eymax. (To give better accuracy, Kmax can be obtained numerically using Eq. (179)). This corre-

spondence requires that the dependency on eymax be weak and the variation in h among fabric systems be

small. This proves to be true as we find later, as h ranges between 1.25 and 1.35.
Explicitly, our version of P ¼ f ðC0Þ is thus
V50=
ffiffiffiffi
X3

p
¼ 21=3e1=12ymaxð1þ h2C0Þ=K3=4

max ð213Þ
where Kmax is accurately represented by
Kmax � exp

(
� 4h2C0

3ð1þ h2C0Þ
ðw2

max � 1Þ
)
w1=3

max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wmax=eymax

p
ðwmax � 1Þ

ln½1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wmax=eymax

p
ðwmax � 1Þ�

( )2=3

ð214Þ
and
wmax �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ h2C0Þ=ð2h2C0Þ

q
ð215Þ
Note that the stain on impact, ep0, is typically well below the maximum, eymax, and is given by
ep0 ¼ a2p0 � fVp0=ð
ffiffiffi
2

p
a0yÞg4=3 ¼ fVp=½

ffiffiffi
2

p
a0yð1þ h2C0Þ�g4=3 ð216Þ
The distance to stop the projectile becomes
dp0
rp

� 1:25
ð1þ 4h2C0=3Þ
ð1þ h2C0Þ5=6

( )
1ffiffiffiffiffiffiffiffiffiffi
h2C0

p !
1

(
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2C0

3ð1þ h2C0Þ

s )
2Vp
a0y

� �1=3

ð217Þ
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Comparing our result, Eq. (213), with Cunniff�s empirical observations, Eq. (211), dependence is not only

on C0 and h, but also mildly on eymax, which is dimensionless. As a key factor in f ðh2C0; eymaxÞ, note that

21=3e1=12ymax � 0:981 for the typical value eymax � 0:04. This outcome is insensitive to eymax, so dependence on

strain will mainly be through Kmax. In the next section we compare this result with Cunniff�s plotted data for
various multi-ply fabric systems of the best current materials technology.

Values of C0 > 0:2 typically correspond the fabric depth being greater than the projectile length or dia-

meter. This is seen by taking the projectile volume and density as Aphp and qp, respectively, where hp is the
projectile height and qp is its density, so that
Fig. 4.

h ¼ 1:3

results
hf ¼ hpðqp=qyÞC0h ð218Þ
Typically the projectile density exceeds that of the fiber by a factor of 5–10, and C0 > 0:2 corresponds to a

fabric with many plies (e.g., more than 20).
6. Discussion of results and comparison to experiments in the literature

We discuss some features of the model and briefly compare our predictions with experimental results in

the literature. We also comment on additional results in 1D regarding membrane energy distribution, heat

generation and momentum transfer, thus demonstrating model consistency.

6.1. Stress concentration effects and cone growth behavior versus areal density ratio

Fig. 4 shows plots of the strain concentration, K, versus normalized cone base radius, w ¼ rc=rp, as
calculated from Eq. (179) with h2C0 replacing C0. Fig. 4a is for C0 ¼ 0:125 and Fig. 4b for C0 ¼ 0:02, and
both are for h ¼ 1:30 (as becomes important shortly) and for various values of the strain on impact,

0 < ep0 6 0:05, as given by Eq. (216). Also plotted is K for 1D given by Eq. (180) with h2C0 replacing C0.

The peak locations, wmax, agree closely with those estimated from Eq. (215). Thus Eqs. (214) and (215)
provide a very accurate estimate of Kmax, which decreases modestly as ep0 increases. This may seem to favor
Plots of the strain concentration, K, versus normalized cone base radius, w ¼ rc=rp for (a) C0 ¼ 0:125 and (b) C0 ¼ 0:02 and

, and for various values of the membrane strain on impact, ep0, related to the initial velocity, Vp, by Eq. (216). Also shown are K
from 1D based on Eq. (180) with h2C0 replacing C0.
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high strain-to-failure materials, except that ep0 increases as a0 decreases due to the corresponding decrease

in tensile stiffness.

Note, in Fig. 4a, that the normalized cone base radius, w, grows considerably (and is unbounded) after K
reaches its peak value at w ¼ wmax. This is not the case for the normalized maximum deflection, dp0=rp,
given by Eq. (217), which requires w ! 1. For the strain to drop back to its initial value, ep0, we need

w � 2wmax and another doubling to reduce it to near zero. Note, however, that the normalized deflection,

dp0=rp is 1.8, or roughly wmax, but w itself will grow much higher as dp0=rp is approached.

For the case of C0 ¼ 0:02 and h ¼ 1:30 in Fig. 4b, corresponding to a much thinner membrane, dp0=rp is
about 3.9, i.e., more than double that for C0 ¼ 0:125, as they both scale roughly as 1=

ffiffiffiffiffiffiffiffiffiffi
h2C0

p
. (Similar

scaling was proposed by Walker (1999).) Another doubling in w is necessary to bring the strain down to its

initial value, ep0. Again Eq. (215) gives a good estimate, 3.9, of wmax, so Eqs. (214) and (215) provide a very

accurate estimate of Kmax, whose values are more than double those for C0 ¼ 0:125 in Fig. 4a.
This raises a crucial issue in experiments, namely, boundary effects that might occur in testing fabric

systems at C0 ¼ 0:02, which may correspond to one or two fabric plies. Then dp0 and wmax would be about 2

times the projectile diameter, or about 1 cm, though high strains persist for much larger w. On the other

hand, the tensile wave speed, a0f , is of order 10 times the cone edge wave speed, ~ccf , so the tension wave will

have traveled of order 10 cm, which approaches the aperture boundary of many sample holders that clamp

the fabric at the edges.

Thus it is possible for tension wave reflections from clamped boundaries to slow the inflow of membrane

material from the implosion, thus influencing the response after the peak in Fig. 4b, possibly causing a
second, higher strain peak, and thus, lowering the V50 response. This is exactly what is shown in Cunniff

(1992) for single ply tests, where apertures of 10 cm cause significant reductions in V50 compared to 20 cm,

and apertures of 2.5 cm cause V50 to drop by a factor of two. As expected, the residual velocities converge at

higher impact velocities.

The same phenomenon is also apparent in experiments in Lim et al. (2003) for a single-ply, 12 cm · 12 cm
Twaron� fabric specimen clamped along two opposite edges and impacted at Vp ¼ 206 m/s by a spherical

indentor. The V50 velocity of a large fabric sheet probably exceeds 206 m/s, yet V50 for these specimens was

130 m/s. The cone wave nears the boundary before significant penetration at 50 ls, enough time for about
three full reflections of the tension wave.

This begs the question as to the exact purpose of rigid clamping (apart from limiting specimen damage

from subsequent impact with equipment). In practice, clamp slip is difficult to avoid, and in body armor

clamping is not practical. Theoretically it confuses interpretation of results for purposes of modeling larger

systems such as body armor, and inadvertently it puts to a disadvantage materials such as Spectra� that

have the highest wave-speeds, a0f .

6.2. Comparison of model predictions to master curve data reductions of Cunniff

Fig. 5 shows our P versus C0 result, Eq. (213), graphed on figures of plotted experimental data by

Cunniff (1999c). Results are shown for Kevlar� 29, Kevlar KM2, PBO and Spectra� 1000 fabric systems,
respectively. We have removed Cunniff�s empirically drawn curves and replaced them with Eq. (213) for the

h values shown (though the lines follow virtually the same paths as Cunniff�s). The values for all fiber

properties are Cunniff�s, as are the normalizing velocities,
ffiffiffiffi
X3

p
(i.e., his

ffiffiffiffiffiffi
U 	3

p
). In Fig. 5a, for instance for

Kevlar� 29, rymax � 2:9 GPa, eymax � 0:034, Ey � 74 GPa and qy ¼ 1440 kg/m3 producing the normalizing

velocity
ffiffiffiffi
X3

p
� 624 m/s using Eq. (210). In the case of Spectra� 1000 in Fig. 5d the data was plotted using

Cunniff�s 20% reduction in
ffiffiffiffi
X3

p
needed for good agreement. Cunniff suggests this anomaly is the result of

thermal softening and we agree, as discussed later.

In Fig. 5 a–d, the only parameter we could adjust was the effective contact diameter factor h in hDp and
even then the range 1:256 h6 1:35 is remarkably narrow. The effective increase in projectile nose diameter



Fig. 5. V50 data for (a) Kevlar� 29, (b) Kevlar� KM2, (c) PBO, and (d) Spectra� 1000 multi-ply fabric systems plotted on dimensionless

P versus C0 coordinates. Data are taken from figures in Cunniff (1999c), and normalized according to his fiber property values. Solid

lines are 2D model theoretical predictions, Eq. (213), using the effective impact diameter, Dph ¼ hDp where h values are shown. The

effect of varying the adjustable parameter, h, is shown in (a), which also shows results from the 1D model (dashed lines) where

Kmax ¼ 1.
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in the sudden momentum transfer, ðh� 1ÞDp, about 30%, is typically far less in fact than the thickness of

the fabric systems tested in Fig. 5.

Unless h is chosen to be about 1.3, even the 1D model prediction ends up below the data at higher values

of the areal density ratio, C0, as seen in Fig. 5a. This is very strong evidence that the role of h is as stated. In

1D, Kmax ¼ 1 (see Fig. 4) and thus, the explanation must be that a larger effective area of momentum

transfer than Ap, i.e., h
2Ap ¼ 1:69Ap, must be involved in the impact to slow the projectile. As we see shortly,

the number of fabric plies is of order 20–40, so a wrap-around and spreading effect to fabric layers un-

derneath is the likely cause.
Walker (1999, 2001) developed a membrane model that also fit Kevlar� 29 V50 data from Cunniff (1999c)

quite well. Similar to our h, Walker had a parameter, b ¼ 1:6. This amounts to an impact area inflation

factor of b2 ¼ 2:56, whereas we have h2 � 1:69. Walker�s model did not account for the tension wave in-

duced flow of membrane material towards the impact zone, so it gave very low membrane deflection angles,

c, certainly a main factor in the difference.
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It is startling that the agreement in Fig. 5 a–d is so good given the many simplifying assumptions in the

model and the fact that the fabric systems are biaxial and have many, relatively independent plies, whereas

our membrane model has one ply that is isotropic in plane. Evidently the increased dimensionality of the

fabric relative to a 1D model with right angle, crossing yarns, is the dominating aspect. Furthermore,
structural details of the fabrics, such as yarn spacing, yarn denier, yarn crimp, yarn slippage, ply spacing,

yarn transverse compliance, etc., were not represented in the membrane model, and for these standardized

RCC projectiles seem not to be important. This is not to say that these factors are unimportant for other

projectiles with sharper tips (conical, ogive, spherical) as they may strongly influence the results, as dis-

cussed shortly.

We note, in Fig. 5, that values of C0 > 0:2 typically correspond to the fabric depth being greater than the

projectile length. While the basic information is not provided in Cunniff (1999c), the value C0 ¼ 0:2 might

correspond to say 25 or 30 plies of fabric made from 1000 denier yarns and impacted by a 16 grain (1 g) flat-
nosed, cylindrical (RCC) steel projectile with a diameter of 0.55 cm and length to diameter ratio of unity.

Even if highly compressed with no voids, Eq. (218) indicates that the depth, hf , of Kevlar 29 would be about

the same as that of the projectile, and as a loose multi-ply fabric, the depth would be 2–3 cm.

Note from Eq. (217) that the stopping distance dp0 in this 2D example is about 0.5 cm, whereas in 1D,

using Eq. (189) with h2C0 replacing C0 and a0y replacing a0, it is about three times that value. These values

might be reasonable for a highly compacted Kevlar panel but not a multi-ply fabric as the predicted

stopping distance is far less than the multi-ply fabric depth. Again this begs the question as to why the

single membrane model should work so well in Fig. 5, when ply failures are likely to be sequential and
rather decoupled as Cunniff (1999a) suggests.
6.3. Model predictions for residual velocity after penetration compared to Cunniff ’s data

Fig. 6 shows a plot of residual velocity, Vres, versus striking velocity, Vp, calculated from our 2D

membrane model, as described in Section 4.6. The solid lines to the right of the dots also coincide with the
Fig. 6. Residual velocity, Vres, versus striking velocity, Vp, of standardized RCC projectiles into Kevlar� 29 fabric systems, (a) 23-ply

and (b) 44-ply, taken from Cunniff (1999b). Areal density ratios, C0, correspond to 2, 4, 16 and 64 grain RCC steel projectiles believed

used in the experiments. Solid lines are based on V50 versus C0 values from Fig. 5(a) where h ¼ 1:30. Lines to the right of the solid dots

are also the 1D solution as are the dashed lines but using h ¼ 1 for these higher velocities implying a much smaller fabric patch area, Ap,

in momentum transfer.
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1D solution. Again this data is for 23-ply and 44-ply fabric systems of Kevlar 29 taken from figures in

Cunniff (1999b). Unfortunately Cunniff did not provide areal density values for the fabrics, and the pro-

jectiles were not specifically identified but they are believed to have been steel RCC projectiles in the

variations 2, 4, 16 and 64 grains. Based on this hypothesis and data in Fig. 5, the C0 values are believed
reasonable.

Within the data variability in Fig. 6, the model is consistent across this wide range of C0 and gives

good agreement. The most noticeable disagreement is with the 44-ply fabrics with the smallest projec-

tiles (highest C0 values). The predicted residual velocities are increasingly lower than the actual ones, as

the striking velocities increase to well above the V50 limit. In terms of the model, this is understandable

upon noting that the sequential failure of the plies will cause small wmax values for each ply compared to

a single thick membrane with the same overall V50 so the energy absorbed per ply may be less. For the

1D model the residual velocity is simply Vres ¼ Vp=ð1þ h2C0Þ assuming the projectile instantaneously
severs a plug of the multi-ply fabric and the velocity decrease is due to momentum transfer alone. The

dashed lines for 1D show the effect at higher impact velocities of taking h ¼ 1. The data suggest that

h must decrease with increasing velocity; that is, the overall cut fabric plug size in momentum transfer

decreases.
6.4. Momentum transfer consistency

In the case of a 1D tape of diameter Dp (2 spokes), it is possible to do a momentum transfer analysis,

beginning with a square projectile with a chisel tip (with slope exceeding cp0 on impact) spanning across the
tape, and comparing it to that for a square-faced projectile of the same width, Dp. The idea is to show, in

the chisel tip case, that by the time the transverse wave spans distance Dp, thus covering the same tape area

as the blunt square tip, the projectile velocities are about the same. In the case of the chisel tip, the results in

Section 4.2 can be used to show that the chisel projectile velocity becomes
V̂Vp0 ¼ Vp expð�C0Þ ¼ Vp=ð1þ C0 þ C2
0=2þ � � �Þ � Vp=ð1þ C0Þ ð219Þ
The last expression is indeed our assumption, Eq. (163). The relative error is of order C2
0=2, and thus, even

for the large value C0 ¼ 0:3 (typical of 20 or 30 plies of fabric in body armor) the two values only differ by
about 5%, and for C0 ¼ 0:2 the difference is about 2%. Thus, starting as a sharp wedge, once the wave spans

the diameter Dp the projectile velocity will be about the same as if the impact were from a square blunt

projectile of diameter, Dp. This is a strong consistency check for our model and indicates that the adap-

tation of constant velocity relationships to the case of projectile deceleration is very accurate unless C0 is

very large. In the latter case the fabric system will be much thicker than the projectile, contrary to the

membrane assumption.
6.5. Energy distribution and absorption upon impact and potential thermal effects (Vp < V50)

When a projectile suddenly decelerates upon impact, it loses kinetic energy and the question arises as to

how this energy becomes distributed in the membrane cone and implosion wave area in terms of strain

energy, kinetic energy, and energy dissipated as heat into the membrane (assuming negligible deformation

of the projectile itself). In the above, ideal case of the square chisel-nosed projectile impacting a tape, we can

account for this energy up to the time, tp, when the triangle wave has expanded to width, Dp, the effective

shadow cast by the projectile on the tape. The lost projectile kinetic energy by this time is distributed about

half as kinetic energy of the suddenly accelerated square tape patch of area D2
p traveling in front of the

projectile, and about half as the sum of strain energy plus kinetic energy in the propagating radial implosion
wave, the last two being approximately equal in the sum.
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In the case of a blunt-nosed square projectile, this implosion wave does not have time to grow to the

same extent as in the chisel nose in the time it takes for the projectile velocity to drop from Vp to Vp0, so in

the blunt-nosed case significant temperature changes must locally occur in the impacted membrane material

as some projectile kinetic energy is converted to heat. This is important in materials such as polyethylene-
based Spectra�, which have a relatively low melting temperature. It can be shown that local production of

heat from the lost energy is approximately
Nheat � ð1=2ÞV 2
p ð1� kÞ=ð1þ h2C0Þ ð220Þ
per unit mass of fabric material in the impact area, where k is a parameter close to zero in the case of

extremely blunt impact, hf=Vp � Dp=cp0.
Since V50 velocities for fabric systems range over 300–1100 m/s over areal density ratios, C0, ranging over

0.05–0.4, the kinetic energies per unit mass of fabric in the impact area, available to convert to heat fol-

lowing Eq. (220), may be in the range 45–600 kJ if k ¼ 0, and perhaps half of this value (i.e., for k ¼ 1=2).
Mean specific heats of polymeric materials used in ballistic protection are of order 1.5–2.0 kJ/(kgK) so local

temperature rises of order 25–400 K are possible if k ¼ 0, but for a more likely k ¼ 1=2 they would be 12–

200 K. Thus, in view of the fact that V50 tends to rise with C0, certain fabric materials that perform well for

small C0 (i.e., single ply performance where V50 velocities are lower) may be susceptible to thermal softening

and weakening as C0 increases.

In generating Fig. 5d for Spectra� 1000 fabric as in Fig. 5 a–c for the other materials, Cunniff (1999c)

found that Spectra� based material data fell short of the empirical curve for the other materials unless their

yarn strengths were discounted about 20%. The effect seemed to worsen as C0 increased, and he suggested
thermal affects as being a likely cause. Our analysis supports this contention. Indeed post mortem studies of

the impact of Spectra based armor materials, which have higher values of C0, reportedly show effects of

local melting.

We note also that in simulations of fabric impact, oscillations and ringing are a major problem often

requiring artificial introduction of viscosity of some form as in Cunniff and Ting (1999) and Johnson et al.

(1999). The latter authors were uncomfortable with this viscosity introduction, mentioning its lack of

physical basis. We believe this high amplitude ringing is the equivalent of the heating discussed here, and is

a fundamental aspect of the problem.
6.6. Membrane impact by projectiles with paraboloid or spherical shaped noses

The above analysis was performed for flat-nosed RCC cylinders, but the question arises as to how to

treat impact from other axisymmetric nose shapes, such as paraboloid, spherical, ogive or conical shapes.

The latter two are problematic as the contact area is nominally zero, but in practice they would be blunted

by a hard strike face. The key is to calculate an effective impact zone radius, reffp ¼ Deff
p =2. Using

y ¼ ð r_p=2Þðr= r
_
pÞ2 for a paraboloid with local tip radius, r

_
p, an estimate is to solve dy=dr ¼ r= r

_
p ¼ cp0

where cp0 ¼ f2Vp=½a0ð1þ C0Þ�g1=3 is the cone angle on impact by Eqs. (145) and (163). This yields
reffp ¼ r
_
pf2Vp=½a0ð1þ C0Þ�g1=3 � r

_
pð2Vp=a0Þ1=3 ð221Þ
where we have neglected ð1þ C0Þ1=3 � 1þ C0=3 as negligible up to the order of the approximation. Thus

for Vp � 600 m/s and a0 � 8000 m/s the effective radius is reffp ¼ r
_

pf0:15g1=3 � 0:531 r
_

p, or about half the
radius of curvature. Repeating the calculation for a spherical projectile of radius r

_
p, and assuming

cp0 6 p=6, the result will be approximately the same. We also expect the need for an adjustable factor h
_

.

Compared to a blunt cylindrical projectile, such nose shapes amount to an effective decrease in C0 by a
factor of about 4, and by Fig. 5 the predicted decrease in the V50 velocity of a fabric system would be
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substantial. The shape of sharp impactors on fibrous composites remains an active research area, e.g., Ben-

Dor et al. (2002) and Wen (2000).
7. Conclusions

Many results and formulas were developed in this paper, such as distance required to stop the projectile,

residual velocity after penetration, and angle of membrane deflection versus impact velocity, to name a few.

As was pointed out, the membrane model here has a single layer, whereas fabric systems typically consist of

many identical plies (C0 ¼ 0:2 may correspond to about 25 plies) with a ply spacing of order 1 mm. Despite
these complications, the model works extremely well, as Figs. 5 and 6 indicate. Nevertheless, sequential

effects and the extent of ply decoupling are worthy of study, especially when plies of different types are

mixed. Cunniff (1999a) has shown that the strike face layers can be replaced with low cost material com-

pared to the underlying plies without hindering (and even improving) performance.

In Fig. 1 we presented a hypothetical, body armor with multiple layers of diverse properties, and raised

many questions on its possible development. This paper lays much groundwork for modeling such be-

havior. Each layer must serve a purpose and as stated in Section 1 and shown again in Cunniff (1999c),

simply adding a resin to the fabric system to bond fibers together and stiffen it, does not improve per-
formance (per unit weight) except for C0 > 0:4, which amounts to a fairly massive system that is unlikely to

achieve the weight goals of the hypothetical system. What might seem beneficial from experience with static

loading and low velocity impact may turn out to be detrimental at higher projectile velocities and mis-

leading in guiding future research.

As it stands the model sheds light on material properties that may be necessary to greatly improve body

armor performance per unit weight. The key predictor of performance is the normalizing velocity,
ffiffiffiffi
X3

p
,

which can be written as
ffiffiffiffi
X3

p
¼ rymaxeymax

2qy

ffiffiffiffiffi
Ey

qy

s !1=3

¼ eymaxffiffiffi
2

p
� �2=3

a0y ð222aÞ
where all properties are basic yarn (or fiber) properties. This velocity is expressed as the cube-root of the

product of the yarn elastic energy storage capacity per unit mass (a measure of toughness) and its tensile

wave speed, a0y. Increasing the former (as is often believed desirable) may do no good if a0y is greatly

reduced in the process, a situation that may occur with synthetic spider silk. Another consequence of

greatly lowering a0y is the need for a much larger distance to stop the projectile, as Eq. (217) shows. This
would greatly increase the bulk of body armor.

We finally note that the normalizing velocity can also be written as
ffiffiffiffi
X3

p
¼ rymaxffiffiffi

2
p

qy

 !2=3

Ey

qy

 !�1=6

¼ rymaxffiffiffi
2

p
qy

 !2=3

a�1=3
0y ð222bÞ
suggesting that increasing the strength per unit weight of the fiber material is crucial, and if at the same time

the tensile wave speed can be decreased, so much the better.
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